
B A C H E L O R ’ S T H E S I S

konrad winslow

Dynamic Optimization of WebAssembly on low-resource Devices

Department of Computer Science and Mathematics
Munich University of Applied Sciences

Supervisor
Prof. Dr. Stefan Wallentowitz

December 2022 – version 1

Konrad Winslow: Bachelor’s Thesis, Dynamic Optimization of WebAssem-
bly on low-resource Devices, © December 2022

A B S T R A C T

The restrictions native, platform-specific programs put on an appli-
cation’s portability and compatibility are especially problematic for
embedded devices, as different target platforms are very diverse. To
address such challenges, a program may be interpreted, translating
virtual instructions to machine instructions. However, this additional
layer of abstraction usually comes with a penalty on execution speed
due to the interpreter’s overhead,

To improve the runtime performance of interpreted code, advanced
runtimes perform optimizations on a program during execution, a
strategy commonly referred to as just-in-time (JiT) compilation. In
contrast to optimizations performed by compilers ahead of time, a
virtual machine is not restricted to making provably correct assump-
tions about the program and can base compilation on speculations
that may be invalidated.

A modern, standardized and open virtual instruction format known
as WebAssembly (WASM), originally developed for web browsers, is
finding wider usage in embedded systems, smart-, and IoT devices.
Available WASM runtimes for embedded systems do currently not
employ a complex optimization pipeline and perform at best static op-
timizations by employing preexisting JiT frameworks such as LLVM
JiT.

This thesis evaluates the feasibility of employing a speculative, adap-
tive optimization framework for WASM applications on low-resource,
embedded devices. For this, a WASM runtime was extended with pro-
filing, optimization and de-optimization capabilities. The challenges
of translating such strategies to our target hardware and implemen-
tation techniques are described. Measurements show that a dynamic
optimization framework for speculative JiT compilation is feasible on
different SoCs and likely to have a noticeable performance increase
compared to interpretation.

iii

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Goal . 1

1.3 Structure of this work 2

2 background 3

2.1 WebAssembly . 3

2.2 WebAssembly on embedded systems 4

2.2.1 WebAssembly as an alternative to native code . 4

2.2.2 WebAssembly as an alternative to interpreted
languages . 5

2.2.3 WebAssembly as an alternative to the JVM . . . 6

2.3 Interpreter Optimizations 7

2.3.1 JiT-compilation Strategies 7

3 design 13

3.1 Technologies . 13

3.1.1 ESP32-C3 . 13

3.1.2 MIMXRT1170-EVK 14

3.1.3 Development Framework 14

3.1.4 Wasm3 . 15

3.2 Dynamic Optimization 17

3.2.1 Profiling . 18

3.2.2 Optimization & Integration 18

4 implementation 21

4.1 Profiling . 21

4.1.1 Function invocation frequency 21

4.1.2 Target invocation frequency 21

4.1.3 Function Call-stacks 22

4.2 Optimization & Integration 23

4.2.1 On-Stack Replacement 23

4.2.2 Recompilation . 26

4.2.3 Polymorphic Inline Caches 26

4.3 Garbage Collection . 28

5 profiling 31

5.0.1 Methodology . 31

5.0.2 Processor Profiling 32

5.0.3 Memory Profiling 32

6 discussion 35

6.1 Interpretation . 35

6.2 Code Generation . 36

6.2.1 Cost of code generation 36

6.2.2 Benefit of code generation 37

6.3 Future Work . 37

6.3.1 Next Steps . 38

6.3.2 Open Questions 38

6.4 Related Work . 39

v

vi contents

6.5 Conclusion . 39

bibliography 41

L I S T O F F I G U R E S

Figure 1 Wasm3 interpreter state during execution . . . 17

Figure 2 Backtrace capture during stack unwinding . . 23

Figure 3 On Stack Replacement 25

Figure 4 Layout and control flow using a polymorphic
inline cache . 28

Figure 5 Memory Trace: ESP32C3 ’Serde’ 33

Figure 6 Memory Trace: i.MXRT1170 ’Interp’ 34

vii

L I S T O F TA B L E S

Table 1 Historic developments of dynamic optimization 8

Table 2 Dynamic data structures used by Wasm3 ex-
tension . 29

Table 3 Benchmark module characteristics 32

Table 4 CoreMark results 33

Table 5 ’Interp’ memory statistics 34

viii

L I S T I N G S

Listing 1 Add.c & Add.wasm 4

Listing 2 C source code for op_CopySlot_32 17

Listing 3 Invocation-counting instrumentation preceding
function entry 22

Listing 4 Wasm3 runtime struct including two hashta-
bles for OSR . 25

Listing 5 Garbage collection code addition to op_Entry . 30

ix

A C R O N Y M S

WASM WebAssembly

JiT Just in time

OSR On-stack replacement

PIC Polymorphic inline cache

TCO Tail-call optimization

wat WebAssembly text format

WASI WebAssembly System Interface

HAL Hardware abstraction layer

MCU Microcontroller

x

1
I N T R O D U C T I O N

1.1 motivation

Some IoT devices and embedded systems, like smart cards, load and
execute user applications on demand, instead of being programmed
ahead of time. For example, on devices supporting proprietary Java
Card technology, interoperable java applets such as authentication
clients can be loaded at runtime to extend core functionality. If not
for a virtual machine interpreting an application, as is the case with
Java Card, programs would have to be compiled for each native tar-
get platform, accounting for peripherals, extensions and different ma-
chine instruction sets.

WebAssembly offers a promising technology for virtualizing such
applets: Its bytecode format can easily be mapped to machine instruc-
tions, and a variety of source languages, such as C, Rust and C++ can
be compiled to WASM.

However, the computational power of embedded devices is low,
worsening the negative impact the use of a virtual machine has on ex-
ecution efficiency. To improve performance, an interpreted program
can be optimized during runtime by just-in-time compilation. Such
dynamic optimizations can use observations of the program to limit
optimizations to frequent code sections or to perform speculative opti-
mizations. JiT compilation drastically improves runtime performance,
leading to better responsiveness and lower processor requirements.
With future development, a universal WASM runtime containing a
complex compilation pipeline, performing static and dynamic opti-
mizations could enable applets to run efficiently on smart- and IoT
devices in a platform-agnostic manner.

1.2 goal

Several WebAssembly runtimes for non-web environments currently
exist. These runtimes provide an interface for interaction between a
WebAssembly application and the host, and can be integrated as a
subsystem into more complex applications. Support for just-in-time
compilation on popular WASM interpreters is in the early stages of
development, but efforts are so far restricted to performing simple,
static optimizations like register allocation.

Regarding other interpreted languages, advanced runtimes, like
the HotSpot VM, GraalVM, luaJIT, V8 or SpiderMonkey, make wide
use of adaptive, feedback-guided optimizations, due to which they
can, in some cases, outperform ahead-of-time compilers that can’t
use live runtime feedback.

1

2 introduction

The execution efficiency of WebAssembly on embedded devices
might similarly benefit when such feedback-guided optimizations are
utilized. Not only do such dynamic optimizations have the potential
to create better-performing code; they can better judge what code
sections to spend compilation resources on. Challenges, restrictions
and the potential performance impact of using dynamic, feedback-
guided compilation on low-cost devices interpreting WebAssembly
should be assessed and enable further work on the matter. For this,
an existing WebAssembly interpreter is to be extended with dynamic
optimization capabilities and serve as a basis for evaluation.

1.3 structure of this work

The contents of this thesis are structured as follows:
In Chapter 2, fundamentals of WebAssembly and optimizing inter-
preters are established. Chapter 3 discusses the approach and con-
straints of the experimental implementation as well as the technolo-
gies it is based on: In Section 3.1 the development- and profiling tar-
gets and the WebAssembly interpreter to be extended are introduced.
A chronological outline of the development of dynamic optimization
is given in Section 3.2.

Chapter 4 delineates the implemented extensions to the WASM in-
terpreter and rationalizes adaptions made due to the target hardware
or interpreter design. Measurements comparing the extended- to the
baseline interpreter are listed in Chapter 5, which are used as the
basis for predictions, discussion, and further work in Chapter 6.

2
B A C K G R O U N D

2.1 webassembly

WebAssembly is a modern binary instruction set for a virtual stack-
based machine [52]. It was originally designed as a fast, portable
and small virtual code format for use in web browsers in conjunc-
tion with JavaScript. However, it is not restricted to the originally
intended use case, as each environment WebAssembly is executed on
can provide an API for interaction. For example, web browsers offer
an execution environment with functionality for the interoperability
of JavaScript with WASM [50]. Similarly, the WebAssembly System In-
terface (WASI) acts as a general abstraction layer for use in multiple
non-web environments [20].

A WebAssembly application consists of a set of modules, all of
which declare imported and exported items, such as functions, global
variables, tables and memories. Using exports, a module can make
functionality available to the runtime environment, also called the
"embedder". Using imports, a module can interact with the embed-
der, for example by opening and writing files using corresponding
imported functions. Because WebAssembly is a stack-based instruc-
tion architecture, operations consume their arguments from the stack
and push their output to the stack. Note that the stack is implicit, and
an execution environment might not use an actual stack for its imple-
mentation. Next to the stack, WASM modules have byte-addressable
vectors called ’memories’, tables containing values of a reference type,
and variables that can each be modified and read by instructions. A
notable attribute of WASM is that it runs inside a memory-isolated en-
vironment and a module’s semantics and structure are validated for
soundness. For instance, the signature of a function is checked at the
call site to ensure it matches the expectation. Unlike most other byte-
code formats, all of WASM’s control instructions target well-defined
structures, mirroring lexical control flow. Structured control instruc-
tions such as if/else, blocks or loops introduce labels to the module.
Unstructured instructions like branches can only jump to labels cur-
rently in scope, and not to arbitrary bytecode positions. Labels are
introduced based on scope: For blocks and if/else constructs the la-
bels point to the end of each construct, while loops add labels to the
scope that point to the beginning of the loop.

WebAssembly bytecode can be displayed in "WebAssembly text for-
mat" (wat) which formats a module’s abstract syntax as s-expressions.
We can convert between WASM bytecode and the text format, the
latter being easier for humans to read and work with. A simple C-
program with its WASM compilation result formatted in wat is shown
in Listing 1.

3

4 background

int add (int first, int second) {
return first + second;

}

(module
(type (;1;) (func (param i32

i32) (result i32)))↪→

(func $add (type 1) (param i32

i32) (result i32)↪→

local.get 1

local.get 0

i32.add)

(memory (;0;) 2)

(export "memory" (memory 0))

(export "add" (func $add))

Listing 1: Add.c & Add.wasm

WebAssembly is not only designed to be platform-independent,
but it is also independent of the source language it can be com-
piled from. This allows for a wide variety of source languages to
support WASM compilation and interoperation [42]. WebAssembly’s
low-level nature and the absence of garbage collection or a memory
model make it more popular as a target for low-level languages like
C, rather than for feature-rich, high-level languages [22, 41].

There exist parallels between WebAssembly and Java Bytecode [29].
Both intermediate representations specify a stack-based virtual ma-
chine with the support of variables and other named memory lo-
cations and allow for different high-level languages to be compiled
into the respective format [40, 48]. Either instruction format increases
the portability of an application by transferring execution to a vir-
tual machine, making it independent of the hardware platform. Even
so, as WebAssembly is designed to be language-independent, while
Java bytecode was originally developed for the Java programming
language, WASM source languages are more diverse than those com-
monly used to generate Java bytecode [40, 49].

2.2 webassembly on embedded systems

The WebAssembly working group acknowledges that, although ini-
tially designed for the web, WASM can be executed on a diverse set of
platforms, including embedded systems. This is achieved by WASM’s
platform-independent design; as WASM does not inherently contain
any domain-specific bindings or instructions unless they are provided
by the embedder [52].

2.2.1 WebAssembly as an alternative to native code

There are two main reasons to run a WASM application on an embed-
ded system, as opposed to using native machine code.

Firstly, WebAssembly applications are implicitly portable between
any platform that provides the required interface, while considerable
effort goes into ensuring cross-platform compatibility for native pro-
grams [31, 43, 46]. When developing a native application with support
for different target platforms, each of the targets’ differences has to

2.2 webassembly on embedded systems 5

be taken into account. It is common to develop a platform abstrac-
tion library alongside the application, which increases development
costs [56]. Such a library is often called a hardware abstraction layer
or HAL, which serves as middleware between the hard- and soft-
ware. However, native programs including a HAL are not forward-
compatible with regard to the set of supported platforms. Each time
support for a new target is to be added, the abstraction layer has to
be extended. In addition to the extension of the HAL itself, an ap-
plication’s code has to be recompiled to account for changes in the
abstraction library. Furthermore, hardware abstraction layers are typ-
ically written in a single source language, such as C, and are thus not
language-independent.

WebAssembly can solve problems of cross-platform development
on embedded systems by only requiring a compatible embedder to
be present for each supported target. This reduces development costs,
as an application only has to target the already standardized WASM
interface, and makes applications implicitly forward compatible to
any platform which will host a compatible runtime. No recompilation
is required to support new targets and WASM is independent of the
source language used for development.

Secondly, WebAssembly enables the execution of multiple software
components in secure, isolated environments. On embedded systems
that execute more than one program concurrently and may have the
ability to load arbitrary programs, security is a concern [37]. Applica-
tions should run in isolation so that they cannot access each other’s
memory or gather information from another process in an unprivi-
leged manner. In addition, software faults in one application should
not lead to the failure of other components. Usually, an operating sys-
tem such as Linux offers isolation between different processes, but
embedded devices may not offer all features required by typical oper-
ating systems, such as a memory management unit. Due to WASM’s
design, different modules are implicitly executed in isolation from
each other. They cannot access memory in an unprivileged manner
and the implementation of a WASM runtime does not require special-
ized hardware support [27].

2.2.2 WebAssembly as an alternative to interpreted languages

The advantages WebAssembly offers compared to native code can be
achieved by many interpreted languages and instruction sets. High-
level, interpreted languages have recently been gaining traction as an
alternative to machine code on microcontrollers. A popular instance
of such language is python, which can be run on "bare-metal" systems
(which do not provide an operating system) using the MicroPython
runtime [18].

There are drawbacks to the use of high-level, interpreted languages
on embedded systems, which limits their use [43]. Languages that are
interpreted on the target platform typically run a lot slower than a na-
tive program would. The reason for this is twofold: Interpretation of

6 background

virtual instructions always comes with computational overhead and
languages such as python have dynamic language constructs and fea-
tures that are difficult to implement on low-resource systems. For
instance, python does not require the manual management of mem-
ory, so a garbage collector is required to be included in MicroPython
[19]. In comparison, WebAssembly combines the portability of an in-
terpreted, high-level language with a low-level design, enabling it to
achieve better performance results [43]. For instance, WebAssembly
outperforms a subset of JavaScript used as a compilation target for
low-level programming languages: ’asm.js’ [44]. Furthermore, WASM
is more suited as a target for low-level programming languages, such
as C, C++ or Rust, because of its simple and universal semantics [52].
This comes with the disadvantage of being a less suitable compila-
tion target for high-level languages, that require runtime support for
garbage collection, dynamic typing, or reflection.

As traditional interpreters only support the execution of a single
language, other programming languages are incompatible. This re-
striction does not only limit the set of languages one can choose from
for development; it also makes inter-operation between them difficult.
Sometimes it is possible to transform the code of one high-level lan-
guage into another, a process known as transpiling, but because of
language-specific features, this is not always feasible. Owning to We-
bAssembly’s design, multiple source languages can be combined into
a single WebAssembly application and interact with each other in the
same runtime.

2.2.3 WebAssembly as an alternative to the JVM

Unlike interpreters for high-level languages, the JVM and a WebAssem-
bly embedder both execute intermediary instructions which a source
program gets compiled into [29, 52]. In the context of embedded de-
vices, WASM has certain advantages over Java bytecode [27]: more
universal semantics, which are easier to map to machine instructions,
and better support for low-level source languages [37, 52].

Regarding the first aspect, Java bytecode was originally designed as
an intermediate format for the Java programming language. As such,
many of its constructs and instructions are designed with Java’s fea-
tures in mind. For instance, almost all calls in Java are dynamically
dispatched on an object, hence the JVM supports ’invokevirtual’ and
’invokeinterface’ instructions [29]. Specialized semantics make it more
difficult to implement a runtime, especially on resource-constrained
devices. WASM, with its low-level and platform-independent design,
mostly supports instructions that are present on many native architec-
tures. Furthermore, WASM’s memory model consists of a stack, vari-
ables/locations, tables, and linear byte vectors, all of which require
minimal overhead to translate to a machine’s native memory model,
which is typically also divided into a stack and byte-addressable
memory.

2.3 interpreter optimizations 7

The JVM supports features such as garbage collection, reflection,
and dynamic dispatch, which are usually not used on embedded,
bare-metal systems. As such, the JVM is a suitable target for high-
level languages with features that closely match the JVM’s semantics
like Java or Kotlin. Low-level languages are better suited for repre-
sentation as WASM, which performs no garbage collection and only
hosts a simple memory model.

Notably, the Java platform "Java Card" tries to improve Java’s com-
patibility with low-resource hardware and is being used on embed-
ded devices, particularly on smart cards. Java Card is a proprietary
[36] subset of the Java 2 programming language and is missing sev-
eral language features from the full Java SE platform to allow for
its execution on a resource-constrained environment. Java Card is li-
censed to hardware manufacturers on an OEM basis. However, Java
Card does not attain the same source language universality as WASM
can.

2.3 interpreter optimizations

Executing a program by interpreting its instructions, instead of di-
rectly executing them on the hardware, drastically decreases its ex-
ecution speed, with early, interpreter-only Smalltalk-80 systems run-
ning benchmarks at an order of magnitude slower than equivalent
C-programs [9].

Throughout the history of virtual machines, many techniques have
been devised which optimize the execution speed, memory usage
and code size of interpreted programs, allowing them to challenge
the performance of native programs compiled with an optimizing
compiler[4, 30].

One can distinguish between optimizations of the interpreter de-
sign, such as choosing more suited data structures, and the optimiza-
tion of the interpreted program, such as by JiT or AoT compilation.
The latter is relevant to this thesis and we refer to it using the term
"optimizations".

The optimization of an interpreted program transforms it into a
different form. We will refer to this transformation as compilation,
even when we do not emit native code. For example, the program
can be compiled into an intermediate representation. When compila-
tion occurs before a program’s execution takes place, it is classified as
ahead-of-time (AoT) compilation, contrasting just-in-time (JiT) compi-
lation, which is performed during runtime.

Strategies used in AoT compilation are outside of this thesis’ scope.
Note, however, that JiT compilers rely on many optimizations com-
mon to AoT compilation, like register allocation or loop unrolling.

2.3.1 JiT-compilation Strategies

Just-in-time compilation ultimately obtains a performance increase
by applying similar optimizations as the ones used by AoT compil-

8 background

strategy system authors

Dynamic native-code gener-
ation

Smalltalk Deutsch and Schiff-
man 1984[13]

Type prediction; customiza-
tion; guarding

SELF Chambers et al.
1989[8]

Polymorphic inline caches SELF Hölze et al.
1991[26]

Deoptimization; OSR SELF Hölze et al.
1992[24]

Adaptive/Tiered optimiza-
tion; Feedback-guided
optimization

SELF Hölze and Ungar
1994[25]

Dynamic patching Java Cierniak et al.
2000[11]

Trace compilation Dynamo; Java Bala et al. 2000[7];
Gal et al. 2006[17]

Table 1: Historic developments of dynamic optimization

ers. However, instead of optimizing the entire program, JiT compilers
can inspect the code’s execution and decide on what parts to compile
with how much effort. In addition, using execution feedback, opti-
mization at runtime can be more aggressive than static, AoT optimiza-
tion, which is restricted to transformations that provably maintain a
program’s semantics.

Modern interpreters can rival the efficiency of native machines by
combining various JiT compilation strategies developed over the past
40 years. Table 1 summarizes relevant milestones, many of which
were achieved through research on the Smalltalk, Self and Java pro-
gramming languages. A JiT compiler requires two separate subsys-
tems: A profiling and decision-making component, that gathers infor-
mation about an executing program, makes decisions based on that
information and propagates the profiling data to other components,
and an "optimization" system that optimizes the executed program
and integrates its results with the rest of the runtime.

2.3.1.1 Dynamic optimization

Dynamic optimization, performed by a dynamic compiler differs from
standard, static optimization in being performed during the runtime
of a program. This is the most general case of JiT compilation and the
two terms may be used interchangeably.

Deutsch and Schiffman described a basic form of dynamic opti-
mization called dynamic translation for an efficient Smalltalk-80 run-
time [13]. Part of the idea was to translate virtual instructions to na-

2.3 interpreter optimizations 9

tive machine code, which would be generated on demand by the con-
trol flow of a program, reducing the overall memory usage compared
to eagerly compiling all code. A method would be compiled when
first invoked, and then kept in a cache for future invocations.

The prototype-based SELF language, making heavy use of dynamic
dispatch, improved upon Smalltalks-80’s dynamic translation by in-
lining messages (method calls) and guessing the type of a message’s
receiver, which allows for further optimizations to be performed. The
prediction of program attributes allows affected sections to be com-
piled in a more optimized manner by ’specializing’ generated code
to such attributes. Since the type prediction could prove incorrect in
a dynamic language, a test and corresponding branch were inserted,
preceding any specialized code, to fall back to an unoptimized ver-
sion should the test fail. This technique is often referred to as "guard-
ing" a section of code. Alternatively, control flow may be diverted
based on the type of a variable evaluated by the guard, a strategy
called message splitting by the authors. We refer to any dynamic op-
timizations that rely on assumptions that can be invalidated through-
out a program’s execution as "speculative". SELF’s speculative type
prediction relied on static information, like that the ’equals’ opera-
tion is most often performed on two integers, and did not yet consider
type feedback from the executing program.

2.3.1.2 Feedback guided optimization

Feedback-guided optimizations consider data gathered about the pro-
gram at runtime and are inherently dynamic. Ahead-of-time compil-
ers can similarly use prerecorded execution profiles, but these are not
considered feedback, as the profile used during compilation is static
in nature.

The third implementation of SELF extended the prior version by
basing compilation decisions on dynamic feedback [25] and allowing
for "adaptive optimization". With adaptive optimization, the respon-
siveness of a program is increased due to the use of fast, baseline
compilation at the start of execution and using obtained feedback to
recompile frequently executed code sections with further optimiza-
tions. The original work described using simple method invocation
counters to identify "hot" methods. An invocation counter exceed-
ing a threshold would trigger the more optimized recompilation of
a currently executing function. To decide on what call frame to be-
gin recompilation at, the size and call frequency of multiple meth-
ods on the call stack were observed. Switching to more complex,
time-consuming compilation algorithms after recording profile data
is common in modern runtimes such as V8 [6] or HotSpot [30], with
three or even four tiers of compilation commonly existing. The initial,
fast compiler of such architectures is often referred to as a "baseline"
compiler.

With the new profiling capabilities, the third generation of SELF
could base its type prediction on observed runtime feedback instead
of the previously used static type information. This effectively allows

10 background

for "adaptive inlining", where the most frequent target of a dynamic
call site gets inlined into a surrounding method.

2.3.1.3 Deoptimization and recompilation

Sometimes it is required to deoptimize or recompile a currently exe-
cuting section of code, such as when an assumption proves to be in-
valid or when a more aggressive optimization should be performed.

Deoptimization was originally used for debugging optimized code
in a SELF virtual machine [24] but has since been used to allow
speculative optimization without having to compile a code path to
take should a preceding guard fail. Two notable deoptimization tech-
niques are on-stack replacement (OSR), as originally done in SELF,
and dynamically patching code sections in a thread-safe manner. On-
stack replacement is performed at "safepoints", at which a 1:1 map-
ping of optimized to unoptimized code exists: During OSR, an equiv-
alent, unoptimized or recompiled call stack and runtime state are
created for the active backtrace, depending on if deoptimization or
reoptimization is to be performed. Afterward, the new functions re-
place all current activations on the stack, and execution continues
where it was interrupted. SELF would use OSR to both deoptimize
compiled code for debugging as well as to recompile a currently ex-
ecuting method when the invocation threshold was exceeded. Code
patching, on the other hand, requires that a failure path is present at
sites where an assumption may prove invalid, but instead of a guard,
a direct jump to the optimized path is inserted. When an assumption
is invalidated, the jump is patched and replaced with a comparison
and a branch [11]. On-stack replacement has the added benefit of also
allowing the system to replace functions with recompiled versions
while they are still active.

Deoptimization can be triggered by a guard (synchronously) or by
other components of the runtime system (asynchronously). For exam-
ple, Java inlines virtual method calls without inserting a check for the
receiver type should only one instance of the class exist. When a sec-
ond compatible class is loaded at a later time, the now invalid section
of code has to be "deoptimized" into a version compiled without the
corresponding assumption.

2.3.1.4 Trace compilation

A recent approach to JiT compilation is called "trace compilation" [21].
The methods discussed so far operate on basic blocks or procedures
of the program to optimize. Trace compilation combines the above
strategies for dynamic optimization, but does not treat procedures
as the unit of compilation. Instead, the program is instrumented to
record a bounded trace of its control flow, starting at a "trace anchor",
which is then compiled and optimized.

The trace usually passes through method or function boundaries
and records control-flow information such as the invocation count
of loops, taken branches, and call targets. Once completed, the trace

2.3 interpreter optimizations 11

is compiled, with deoptimization points inserted where the actual
control flow may differ from the recorded trace. The running program
is typically being profiled to trigger trace compilation, similar to how
SELF93 used invocation counts to trigger a recompilation.

2.3.1.5 Profiling

There exist different approaches to collecting runtime information for
use in JiT-compilation [4].

One of the simplest forms of profiling is instrumentation - instru-
mentation inserts instructions into code that collect profiling data. For
example, the described third implementation of SELF incremented in-
vocation counters in method preludes [25]. Instrumentation can range
from collecting simple metrics, such as method invocation counts,
to complex ones, like recording every traversed basic block or trac-
ing the entire control-flow path. Furthermore, instrumentation can be
performed on native machine code as well as on interpreted code and
may be dynamically enabled and disabled.

Another approach to profiling is ’sampling’: when a program is
sampled, its execution state is observed at certain points during ex-
ecution for profile collection. For instance, the aforementioned SELF
implementation samples the call stack when the counter threshold is
exceeded to determine what base method to begin recompilation at.
The sampling process can be triggered in different ways: In SELF93

a counter was used, but another common way is to sample at peri-
odic intervals by using scheduling, hardware level interrupts, or other
software-based techniques [5, 53].

Different profiling strategies can be combined to increase effective-
ness. Since instrumentation can give detailed statistics but has a con-
siderable overhead in optimized code, it can be dynamically added
to an existing code section based on information obtained through
sampling. Suganuma et al. describe a JVM that detects hot methods
using a sampling profiler, instrumenting hot methods to collect de-
tailed information when required [45].

If applicable, hardware performance monitors can also be used to
gather profiling data, but such data sources limit the virtual machine
to supporting platforms.

3
D E S I G N

3.1 technologies

3.1.1 ESP32-C3

To assess dynamic optimization on low-resource embedded devices,
an ESP32-C3 was chosen as a hardware platform for profiling and de-
velopment. Applications were built using a development framework
that provides hardware abstraction of the platform and a runtime
environment supporting dynamic heap allocation.

3.1.1.1 Hardware platform

The ESP32-C3 is a low-cost microcontroller SoC developed by Espres-
sif systems [15]. The SoC supports 2.4GHz Wi-Fi (IEEE 802.11 b/g/n)
and Bluetooth5 low-energy connectivity and aims to optimize power
consumption, making it suitable for IoT applications. Up to 22 GPIO
pins and various peripherals are accessible to the CPU.

The chip’s processor is a single-core, 32-bit Risc-V CPU supporting
the RV32IMC instruction set and operating at up to 160 MHz. Risc-V
is an open instruction set that can be freely implemented and modi-
fied by manufacturers [38]. It takes a modular approach, containing
a base instruction set that can be extended with standardized or cus-
tom extensions [39]. The ESP32-C3’s processor supports the ’I’ base
integer instruction set, the ’M’ standard extension for integer multi-
plication and division, and the ’C’ standard for compressed, 16-bit
instructions.

The processor follows a Harvard architectural approach and uses
a separate instruction- and data bus (I-bus, D-bus). The CPU can ac-
cess 400KB of internal SRAM, of which 384 KB are shared between
I- and D-bus and 16KB are limited to the I-bus. In addition, 384KB
of internal ROM are present, fully addressable by the instruction bus,
and partially addressable by the D-bus as read-only memory. A max-
imum of 16MB of external flash memory is supported: up to 8MB of
read-only data and 8MB of instructions. When dynamically compil-
ing programs, the address space of the ESP32C3 has to be considered:
accesses by the I-bus and D-bus are mapped to separate memory re-
gions.

3.1.1.2 Development Framework

’Espressif’s IoT Development Framework’ (ESP-IDF) provides a soft-
ware development kit, libraries and a board support package for the
development of applications targeting a SoC of the ESP32 family [14].

13

14 design

ESP-IDF applications are scheduled as a task on the FreeRTOS1 oper-
ating system, which enables multiprocessing, a libc implementation,
and dynamic memory allocation. An ESP-IDF project consists of a set
of components, each of which may depend on others. When build-
ing an executable, a project contains one ’main’ component which
implicitly depends on all other components and is added to the build
target. On boot, the Risc-V processor starts execution of a first-stage,
non-modifiable ROM bootloader, which transfers execution to the ap-
plication. In a typical ESP-IDF executable, peripherals, the hardware,
and a heap allocator are automatically initialized during startup to
allow for the execution of high-level programs. Unless otherwise con-
figured, the user application’s entry point: ’void app_main();’ will be
scheduled as a FreeRTOS task.

3.1.2 MIMXRT1170-EVK

NXP’s i.MXRT1170 is a high-performance MCU designed to support
real-time edge-computing-, automotive-, or industry applications [34].
The MCU has fewer resource restrictions than the ESP32-C3 and al-
lows for the dynamic optimization of larger, more complex applica-
tions. For the evaluation of implemented changes, programs were
profiled on the ’MIMXRT1170-EVK Evaluation Kit’.

3.1.2.1 Hardware platform

The platform supports multiprocessing by combining a 1GHz Arm
Cortex-M7 and a 400MHz Arm Cortex-M4 processor. Both proces-
sors support Armv7-M Thumb instructions, which are 16- or 32-bit
wide and 16-bit aligned, and both contain a floating point unit. The
MCU contains 1MB of on-chip RAM, with additional 512 KB and 256

KB TCM memories of the two Cortex CPUs. Similar to the ESP32C3,
the system follows a Harvard architecture, with separate instruction
and data buses; however, instructions can also be fetched using the
data bus, and memory is linearly mapped to addresses [2, 3]. The
i.MXRT1170 MCU allows for various external devices and peripher-
als to be connected and for a maximum of 4GiB of 32-bit external
SDRAM [35].

The MIMXRT117-EVK Evaluation Kit incorporates the i.MXRT1170

MCU, 512 Mbit external SDRAM memory, a total of over 2.5 Gbit of
external Flash, and an onboard DAP-Link debugging interface.

3.1.3 Development Framework

NXP supports the i.MXRT1170 with their ’MCUXpresso’ software
development kit. The SDK comprises a board support package, pe-
ripheral drivers, CMSIS implementations, RTOS support, and ’newlib’
libc bindings.

1 https://www.freertos.org/

https://www.freertos.org/

3.1 technologies 15

To compile and run the interpreter on the target platform, MCUX-
presso is configured to route stdout to a UART port and to set up
a FreeRTOS task for the program, which is executed on the Cortex-
M7 CPU. Code and data are written to the 512Mbit external SDRAM
before execution

3.1.4 Wasm3

The WebAssembly interpreter Wasm3 targets a wide range of differ-
ent platforms and can be used on different microcontrollers, includ-
ing the ESP32-C3 and i.MXRT1170 [32]. Wasm3 relies on ESP-IDF
and MCUXpresso to provide a runtime environment and heap al-
location. Evaluating the use of WebAssembly on different environ-
ments, specifically on MCUs, is a particular goal for the development
of Wasm3. Featurewise, the runtime currently only hosts an inter-
preter and does not perform any native code generation or feedback-
directed optimization.

Most Finished WebAssembly proposals are supported by Wasm3, a
notable exception being reference types2, meaning the runtime does
not support the manipulation of WASM tables at the time of writ-
ing. The interpreter hosts a WASI [20] compliant API, but it is not
supported for all platforms, including the ESP32-C3.

3.1.4.1 Architecture

Wasm3 is written in the C programming language and makes use of
the pre-processor for configuration and cross-compatibility. Wasm3

can either be built as a Windows, Linux or macOS command line util-
ity or used as a library in other applications. Wasm3 bindings exist
in popular languages such as C/C++, Rust, Zig, GoLang or Python3.
To allow interaction with the host environment, applications can link
native functions to imported functions of the interpreted WASM mod-
ule.

Internally, Wasm3 can be subdivided into a parser, a compiler, an
interpreter, and runtime data with utility functions. When using the
library, a user application will interact with different parts of Wasm3

using exposed functions and handles. The basic description of each
component and the interactions are described below:

• User Application
An executable, either the Wasm3 command line utility or a user
program, owns handles for Wasm3 modules, environments, run-
times and results. The WASM bytecode is provided by the user
application for Wasm3 to parse and compile, and native func-
tions can be linked to imported WebAssembly functions. Once
initialized, the user application looks up an exported WASM
function of a module and invokes it.

• Runtime & Utility
Wasm3 provides interfaces to interact with internal data struc-

2 https://github.com/WebAssembly/reference-types

https://web.archive.org/web/20220905124035/https://github.com/WebAssembly/reference-types

16 design

tures, for instance, loaded WebAssembly functions or modules.
Some of these interfaces are available to user code, others are re-
served for internal use. Such utilities provide logic for reallocat-
ing memory, setting identifiers, extracting result values, linking
native functions and populating intermediate code pages.

• Parser
An executable invokes the ’M3Result m3_ParseModule(...)’ function
with a module’s WASM bytecode to parse it and create required
data structures. Wasm3 does not parse a module’s code, as it is
directly read by the compiler, but only the module’s metadata,
including its function types, exports, imports and memories.

• Compiler
The runtime compiles WebAssembly functions when they are
first invoked or looked up. The compilation consists of a linear
pass over a function’s WASM bytecode, throughout which inter-
mediate code, or ’m3 code’ is emitted. The compiler keeps track
of WebAssembly’s stack usage during compilation and maps
its usage to locations in a ’register file’ - an array of memory in-
dexed using offsets. To account for stacking WebAssembly call
frames, the base of the register file is incremented on function
calls. Local values and return values are mapped to the bot-
tom of a function’s register file. A similar approach is taken
for WASM blocks, whose specified semantics also involve stack
input- and output values. As an optimization, the compiler may
allocate a stack location in native registers instead of a location
in memory. M3 operations typically exist in variants either con-
suming operands from slots within the register file or native
registers, so that values can be spilled to memory if required.

3.1.4.2 Execution

The design of the interpreter follows a ’direct threaded’ approach
[28]: each intermediate instruction is handled by a corresponding na-
tive function. To encode a list of instructions, the respective function
pointers are written to an array. During interpretation, a virtual pro-
gram counter ’m3_Pc’ points into the array and the pointees are se-
quentially invoked.

Each operation has the same signature and takes the virtual pro-
gram counter, a pointer to the register file, as arguments. At the end
of each operation, m3_Pc is incremented and the result of calling the
next operation is returned. Due to tail-call optimization, this does not
increase native stack usage, and the call gets compiled into an indirect
jump. However, the operations for calling WebAssembly functions:
op_Call and op_Entry, and the loop instruction op_Loop do cause alloca-
tion of their native stack frame because they cannot be tail-call opti-
mized. This is because certain state, like the next instruction pointer,
has to be preserved.

The layout of the intermediate code page, the native stack, and the
register file during interpretation are displayed in Figure 1.

3.2 dynamic optimization 17

op_Call

op_Entry

op_CallIndirect

op_Entry

op_Loop

op_Entry

IM3Function

op_CopySlot_32

arg1

pc_t

op_Loop

op_ContinueLoopIf

op_CopySlot_32

op_Return

slot1

slot3

ret1

...

m3_Pc

op_CopySlot_32

sp

ret1

arg1

slot1

...

... m3_mem

m3ret_t op_CopySlot_32(m3_pc, m3_mem, m3_reg);
pc

native stack code tableregister file

Figure 1: Wasm3 interpreter state during execution

The code page contains the instructions of the WebAssembly func-
tion that is currently executing, m3_Pc points to the current instruc-
tion. Some instructions take immediate arguments, like register file
offsets, which follow the operation’s function pointer in the code
page. The native stack contains a call stack of operations requiring
a persistent stack frame and the frame of the current operation. The
next instruction will replace the topmost stack frame because of tail-
call optimization. M3_mem points into the register file and acts as
the memory base of a WASM function. Due to the direct threaded
dispatch of Wasm3, the WASM call stack is mapped onto the native
call stack, so no explicit data structure is required to enable function
calls.

The source code of the currently executing instruction in Figure 1

is outlined in Listing 2. Note that dst and src are slots within the
register file, defined by their offset which is given as an immediate,
inline argument.

m3ret_t op_CopySlot_32(pc_t _pc, m3stack_t _sp, M3MemoryHeader * _mem,

m3reg_t _r0)↪→

{

u32 * dst = (u32 *)(_sp + *((u32 *)_pc++));

u32 * src = (u32 *)(_sp + *((u32 *)_pc++));

* dst = * src;

return (*_pc)(_pc + 1, _sp, _mem, _r0);

}

Listing 2: C source code for op_CopySlot_32

3.2 dynamic optimization

The Wasm3 interpreter was extended with capabilities to perform
dynamic, feedback-guided optimizations. Extensions made can be

18 design

subdivided into the two categories outlined in Section 2.3: profiling
and optimization. Notable approaches within either category have
been adjusted and implemented for the technologies described in
Section 3.1 to form the framework of a dynamically optimizing in-
terpreter.

The added framework performs adaptive, feedback-guided opti-
mization but does not currently host a native compiler; instead, func-
tions are recompiled into the same intermediate m3 code. This allows
us to evaluate the impact of the systems governing a JiT compiler’s
decisions and which enable technologies such as recompilation and
deoptimization introduced in Section 2.3.1.

3.2.1 Profiling

To allow for feedback-directed and speculative optimizations, Wasm3

has to collect runtime data about a WebAssembly module and trigger
(re-)compilation that considers the collected profile.

Wasm3 already offered some profiling capabilities for the collec-
tion of debugging information, but these were unsuited for use in
dynamic compilation. Much of the collected debugging information
is not useful and would have to be collected for all tiers of optimiza-
tion, because the interpreter did not allow for its fine-grained control.

To best assess the impacts and requirements of profiling WebAssem-
bly bytecode on constrained devices, new profiling techniques were
added to Wasm3 and existing ones were disabled. In total, the added
profiling system captures the following traits through sampling and
instrumentation: function invocation frequencies, backtraces, indirect
call targets, and target invocation counts. The captured metrics are
used to trigger recompilation, decide on the set of functions to re-
compile, direct recompilation, and to skip indirect function lookup
routines.

3.2.2 Optimization & Integration

Once a hot function has been recompiled, execution should eventu-
ally switch to executing the new version. To ensure a switch takes
place, all future calls have to be directed to the recompiled code by
patching existing calls, changing metadata or inserting a stub. How-
ever, existing activations of a function remain unaffected by this - If a
function on the active call stack contains a long-running loop, an in-
terpreter may still spend a considerable amount of time executing un-
optimized code, degrading performance. To prevent such cases, the
active call frames can be replaced with activations of the recompiled
code using on-stack replacement. While OSR for the re-optimization
of code was introduced by Self-93 [25], later runtimes performing
adaptive optimizations have not always followed the same approach.
Instead, they simply waited for active functions to return, citing the
complexities of implementing OSR and its increased resource require-
ments [12, 16]. To assess the implementation requirements and over-

3.2 dynamic optimization 19

head of an OSR mechanism, the extended version of Wasm3 em-
ploys the technique to replace any re-optimized functions on the call
stack. When the profiling system triggers recompilation, the on-stack
replacement mechanism ensures that the runtime will immediately
switch to executing the newest version of code.

Smalltalk introduced a structure for capturing the invocation counts
of dynamically dispatched calls: "(polymorphic) inline caches". These
structures are unique because they fall into both categories of a pro-
filing system as well as an optimization. Wasm3 was extended with
polymorphic inline caches to both capture the frequency of taken in-
direct call edges, and to optimize WebAssembly programs with such
runtime feedback.

Finally, old versions of recompiled code have to be freed and mem-
ory returned to the system. For this, garbage collection of code pages
and ancillary metadata has been added to Wasm3.

4
I M P L E M E N TAT I O N

4.1 profiling

4.1.1 Function invocation frequency

The time spent by the interpreter in different WASM functions can be
approximated using different approaches. Of the techniques outlined
in Section 2.3, capturing invocation frequencies using instrumenta-
tion as described by [25] was chosen. Incrementing a value inside the
prelude of a function is easy to implement and suited for use on low-
resource devices that may not support the systems to periodically
sample a program.

Hölzle and Ungar captured invocation counts of each method and
let them decay exponentially over time; otherwise, every function
would eventually trigger a recompilation. In SELF and JVM imple-
mentations, counters were often adjusted periodically through the
use of scheduled context switches either between user-level, inter-
preter threads or operating system tasks. The period was typically
shorter than the chosen half-time, and as such in each period, coun-
ters were divided by a floating-point constant between 1 and 2.

Because kernel- and user-level threads are not always viable on
low-resource devices such as microcontrollers, a different decaying
algorithm was implemented in Wasm3. Instead of periodically reduc-
ing every function’s invocations, Wasm3’s extension decreases counts
lazily. When a function call causes a count to meet its threshold, the
time passed since the last decay is calculated and the number is re-
duced accordingly. Afterward, the count is checked again, and if it
still meets the threshold, a recompilation is triggered. Listing 3 shows
the code responsible for calculating invocation rates at the entry of a
function. To reduce the overhead of calculating invocation frequen-
cies, especially in the absence of an FPU, the decay() function simply
halves the value for each elapsed half-time by bit shifting, trading
some precision for an increase in performance.

The number of function invocations is stored as an immediate ar-
gument to the op_Entry instruction.

4.1.2 Target invocation frequency

While the invocation frequency of a function is used to trigger recom-
pilation on function entrance, the counts of every dispatched target
per call site can be used to decide on optimizations such as inlining
and to find a suitable root to begin recompilation at. Recording tar-
get invocation counts effectively gives weights to each edge in the

21

22 implementation

u32 *invoked = &immediate(u32);
(*invoked)++;

if (*invoked >= d_m3InvocationLimit) {

if (*invoked == 0xF0000000) { // set initial timestamp

*invoked = 0;

function->lastDecay = m3GetClock();

goto end;

}

decay(invoked, &function->lastDecay, m3GetClock()); // decay counter

if (*invoked >= d_m3InvocationLimit) { // trigger recompilation

return(m3Err_jitInvokeOverflow); // unwind stack

}

}

Listing 3: Invocation-counting instrumentation preceding function entry

call graph of a WebAssembly program. Two cases were considered
during implementation:

• Static dispatch
In WebAssembly, the target of a ’call’ instruction is well-defined
by a function index into the module’s function vector. To imple-
ment the capture of invocation counts for ’call’ instructions, a
new immediate argument was added to the op_Call instruction
that is incremented on execution similarly to capturing the func-
tion invocation frequency.

• Dynamic dispatch
WASM’s ’call indirect’ operation consumes an integer from the
value stack. The operand indexes into a table containing func-
tion references, allowing for the dynamic dispatch of a target
at runtime. Wasm3’s extension allocates new counters per tar-
get lazily on their first invocation using a construct known as
a ’Polymorphic Inline Cache’, which is described in detail in
Section 4.2.3 PICs serve for both profiling and optimization.

4.1.3 Function Call-stacks

When a recompilation is triggered by an invocation counter meeting
a threshold, a function has to be chosen for recompilation. Typically,
the function on top of the call stack is not the same function at which
recompilation should begin, because then it may not be inlined at the
call site.

To find a suitable root at which to start a recursive recompilation,
an adjusted mechanism inspired by SELF was implemented. SELF-93

traversed the call stack, evaluating the number of times each method
made calls to unoptimized or tiny code, to find a suitable recompi-
lation target. As a prerequisite, a backtrace has to be captured by
the profiling system, which is straightforward in an interpreter that
stores the virtual call stack, but more difficult with directly threaded
interpreters such as Wasm3.

4.2 optimization & integration 23

Wasm3 maps the virtual WASM call stack to the native machine
stack as a consequence of its architecture described in Section 3.1.4.2.
Unless WebAssembly function activations are captured eagerly on
their occurrence, which would result in performance degradation, the
native stack has to be unwound to construct a WebAssembly back-
trace. As a positive effect of the latter approach, performance penal-
ties are only present when a backtrace capture is required, which is
why it was chosen for implementation. Recall that opcodes in the in-
terpreter consist of native functions that call each other: To unwind
the stack it suffices to iteratively return from opcodes, capturing data
about each activation in op_Call and op_Entry instructions, which is
then used during recompilation and on-stack-replacement. Capturing
the stack by returning form functions also makes on-stack replace-
ment mandatory for resuming execution with the correct machine
state. A diagram of the unwinding process is displayed in Figure 2.

op_Entry1

op_Call

op_Entry

op_CallIndirect

return
1recompilation triggered

return

return

m3stack sp

IM3Function function

CallFrame *next

u32 moduleOffsetpush frame

fill frame

op_Entry

return
m3stack sp

IM3Function function

CallFrame *next

u32 moduleOffsetpush frame

fill frame

native stack

Figure 2: Backtrace capture during stack unwinding

4.2 optimization & integration

After the entry of a hot function triggered recompilation and the call
stack was unwound up to a suitable recompilation target, functions
may be reoptimized with consideration of data captured by the pro-
filing system.

Execution of the interrupted activations should then be continued
using the newly compiled code to avoid executing, for instance, the
unoptimized functions in a hot loop. The mechanism that facilitates
swapping active invocations is called on-stack replacement.

4.2.1 On-Stack Replacement

Functions on a call stack can only be replaced if a mapping between
the interrupted continuation of each function and an equivalent ex-

24 implementation

ecution state for the recompiled versions exists. The specific data re-
quired for such mapping varies depending on bytecode semantics
and implementation details, but the following approach has been ex-
tensively cited since OSR’s description for the debugging of SELF
[24]: The location of local variables can be encapsulated in a "Scope
Descriptor". A Scope Descriptor is generated for basic blocks during
compilation and contains a mapping of specific local data locations to
abstract bytecode locations and specify the surrounding scope. In ad-
dition, execution can only be interrupted at "Safepoints" or "Interrupt
points"; Safepoints imply a mapping between intermediate computa-
tions such as register values to the equivalent positions on the abstract
value stack. Because there may not be any valid mapping between the
executing code and the virtual machine in between safepoints, func-
tions can not be replaced in these sections.

Generating and storing metadata to allow for on-stack replacement
is said to entail considerable memory overhead [1, 12]. With little
memory being available on most microcontrollers, the amount of gen-
erated metadata has to be minimized. Next to cautious implemen-
tation, reducing the number of safepoints inherently decreases the
amount of required bookkeeping.

Wasm3’s extension can only trigger re-optimization at ’call’ and
’call indirect’ instructions. For either instruction, a bidirectional map-
ping between the physical program counter and a WASM module’s
bytecode offset exists. Because Wasm3’s op_Entry instruction always
allocates its own stack frame and transfers execution to the function’s
body, it must too be considered a safepoint. However, because the in-
struction’s location is implicitly known, no additional metadata needs
to be generated. Other data, such as the location of stack values that
would be contained in a scope descriptor, is currently not required,
because Wasm3 only supports recompiling functions to equivalent
intermediate code that uses the same slot locations. However, once
native code generation, inlining, or other code transforming optimiza-
tions were to be added, more metadata will have to be recorded to
correctly map temporary and named values.

The bidirectional mapping between compiled and abstract code is
implemented as two openly addressed hashtables stored per runtime.
During compilation, a new entry is added to both tables whenever a
’call’ or ’call indirect’ opcode is emitted; the code implementing the
insertion of new entries is shown in Listing 4.

To replace call frames on the stack, the bytecode offset is retrieved
for the program counter during stack unwinding. Once replacement
functions have been compiled, the wasm2Pc table is accessed to retrieve
the now updated program counter and continue execution at the safe-
point. In their original work, Hölze et al. describe an on-stack replace-
ment procedure that creates new stack frames for every activation and
fills in fields such as the return address and local variables. Wasm3

employs a more flexible strategy that does not require architecture-
dependent stack modification: A stub function traverses the backtrace
and emulates each caller’s behavior, continuing execution of the code
path following the interrupted safepoint as if the entire stackframe

4.2 optimization & integration 25

typedef struct M3Runtime
{

//...

m3_table_u32_M3OSRPoint wasm2Pc;

m3_table_pc_t_u32 pc2Wasm;

//...

} M3Runtime;

void EmitMappingEntry (IM3Runtime i_runtime, IM3CodePage i_page, u32

i_moduleOffset, u8 len)↪→

{

pc_t pc = GetPagePC (i_page);

m3_table_pc_t_u32_set(&i_runtime->pc2Wasm, pc, i_moduleOffset);

m3_table_u32_M3OSRPoint_set(&i_runtime->wasm2Pc, i_moduleOffset,

(M3OSRPoint) {pc, pc + len});↪→

}

Listing 4: Wasm3 runtime struct including two hashtables for OSR

had been constructed. This is enabled thanks to the directly threaded
code; with every instruction being a C procedure, it is easy to jump
into the middle of a code page without needing to modify the VM’s
state. This method could also be used for replacing native code on-
stack if the stub were to update the required stack- and return address
registers before jumping into the code. To achieve OSR, the stub pro-
cedure jumps to the correct resumption point of every function on the
stack in the correct order; evaluating and transferring return values
between stackframes.

Figure 3 outlines the process of on-stack replacement in Wasm3,
notice that the ’call’ instruction of the first frame is executed because
$func3 triggered recompilation on its entry, but for any subsequent
stack frames execution continues on the following opcode. To allow
for recursive on-stack replacement, the stub takes ownership of the
current backtrace so that recompilation may take place inside of an
activation that itself has been invoked by the OSR stub in a nested
manner.

op_Return

op_Call

op_Entry

$func1

op_Call

op_Entry

$func2

sp2

$func2

offset2

sp1

$func1

offset1

backtrace

offset1 offset2

op_Return

op_Entry

$func3
Triggered
recompilation

op_Return

Executed by OSR stub

Executed before recompilation

Figure 3: On Stack Replacement

26 implementation

4.2.2 Recompilation

The recompilation of WebAssembly functions occurs before their on-
stack replacement. Unlike OSR, during recompilation, the captured
backtrace is traversed from callers to callees, since it allows for po-
tentially inlined code to be compiled with the surrounding context.
When Wasm3 recompiles a function, handlers responsible for com-
piling each WebAssembly bytecode instruction can be swapped out
to allow for different behavior. For instance, on function compilation,
the op_Entry instruction is replaced with a variant that disables the
invocation frequency calculation. Recompilation of a function resets
any profiling data associated with it. To avoid allocating redundant
memory on each compilation pass, internal data structures were ad-
justed to allow for the freeing of code pages associated with WASM
functions.

Because ’call’ instructions take a pointer to the target’s op_Entry in-
struction as an immediate argument, all call sites targeting a recom-
piled function have to be updated after recompilation completes. A
linked list was introduced to every function descriptor that stores the
Wasm3 code page pointer of any related call sites, which is populated
during each compilation pass. We need to store pointers to specific
instances of the WebAssembly ’call’ operation due to the possibility
of having multiple, recompiled versions of a function active on the
stack. If we instead used abstract WASM bytecode offsets to locate
the most recently compiled code with our safepoint map, old but still
active instances could not be patched to refer to the new version and
may try to call freed memory.

At its current state, Wasm3 does not include a full native code gen-
eration backend; functions are transformed to the same intermediate
format during recompilation. It is expected that the memory require-
ments will be higher with native code generation due to the com-
piler’s overhead.

4.2.3 Polymorphic Inline Caches

Originally developed as a dynamic optimization [13], and later ex-
tended to gather profiling data [23], Polymorphic Inline Caches can
be used at dynamic dispatch sites to record the times a specific target
was called and to reduce dispatch overhead.

A WebAssembly interpreter has to run a function lookup routine
when an indirect call is executed, indexing into a function table with
the top stack operand. The overhead associated with function lookup
can be reduced by introducing inline caches at the call site: The call
to the lookup routine is replaced with a direct jump to the previous
target’s code pointer. To preserve correctness, a jump to a dynamic
target has to be guarded by comparing the top stack value. Should
the table index differ from the currently cached function, the lookup
function will be used. An issue with such inline caching is that, while

4.2 optimization & integration 27

reducing dispatch time, it cannot be used to count the number of
invocations for any call target but the most recent.

Polymorphic inline caches extend the above concept by storing
cached pointers out of line in dynamically allocated memory. Each
cached target is ordered by its sequence of occurrence; should a guard
detect a wrong table index, its value is compared with the next entry.
If none of the cached functions fit the current index, a backPatch rou-
tine is called that performs the following steps:

1. The polymorphic inline cache is reallocated with additional space
and its metadata is updated.

2. All relative pointers of the inline cache are recalculated and
patched.

3. Function lookup is performed and a new entry for the target is
added to the cache.

4. The pointer to the polymorphic inline cache at the call site is
updated with its new location.

Using polymorphic inline caches, dynamic call sites can be associ-
ated with the invocation counts of targets by storing and updating a
counter in each cache entry.

To increase execution speed, Wasm3’s inline caches are generated
as native machine code and its metadata, table indices and function
pointers are stored inline using immediate instructions. The inter-
preter, instead of performing function lookup, jumps into the poly-
morphic inline cache. One complication of dynamically generating
native code on resource-constrained devices stems from the Harvard
architecture that many microcontrollers, including the ESP-32C3, ad-
here to. Because data- and instruction buses are separated and mapped
to different regions of linear memory, addresses have to be translated
between both regions when generating instructions that reference
data or code. Furthermore, many instruction architectures including
Armv7 have incoherent data- and instruction caches: Every dynami-
cally generated instruction has to be flushed from the data cache and
invalidated in the instruction cache. The native polymorphic inline
cache also has to pass on or load any arguments that are required by
the invoked WASM function.

Figure 4 illustrates the abstract layout of polymorphic inline caches
in Wasm3 and how they affect native control flow. In subfigure 1,
the ’call indirect’ operation received the table index ’3’ on the WASM
stack, which has not been used as an operand before. The processor
jumps to the first cache entry and falls through to the backPatch routine.
A following indirect call in subfigure 2, again using table index ’3’,
falls through the first cache entry and executes the body of the entry
added by the backPatch function.

At its current state, Wasm3 does not support the WebAssembly pro-
posal for reference types1 , which adds the ability to change function

1 https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-
types/Overview.md

https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-types/Overview.md
https://github.com/WebAssembly/reference-types/blob/master/proposals/reference-types/Overview.md

28 implementation

op_CallIndirect

polyCache *

M3Table *

len capacity

if idx == 1

invoke1++

jump $func1

jump backPatch

invoke1

pc

jump; idx = 3

op_Entry

$func3

function lookup and
polyCache patching

jump

$func0

op_CallIndirect

polyCache *

M3Table *

len capacity

if idx == 1

invoke1++

jump $func1

jump backPatch

invoke1

pc

jump; idx = 3

op_Entry

$func3

$func0

if idx == 3

invoke3++

jump $func3

invoke3

jump

1) Dispatch to unseen table index

2) New entry has been added to inline cache

executable

data

...

...

...

...

Figure 4: Layout and control flow using a polymorphic inline cache

table entries at runtime. Should support be added, the implementa-
tion of PICs would have to be adjusted to retain the correctness of a
program; either of the following two changes would suffice:

• One can introduce an additional indirection between a cache
entry and the table entry.

• Keeping track of every PIC that has cached a table index, when
a table is modified, all cache entries are patched with the new
content.

Wasm3’s current PIC implementation already supports patching
cached entries, because it is required for updating pointers during re-
compilation. When the backPatch procedure finds the target function,
it inserts a list entry to the callee’s metadata, similar to the compila-
tion of direct calls described in Section 4.2.2.

4.3 garbage collection

Implementing the above techniques necessitates the use of various dy-
namic, runtime data structures. In particular, each generation of com-
piled code and its associated metadata take up considerable memory.
Table 2 contains the important types of data dynamically generated
by Wasm3’s dynamic optimization system. To run complex, contin-
uous, dynamically optimized programs on our low-memory target
environments, garbage collection should itself be memory efficient
and not rely on context-switching processor capabilities.

4.3 garbage collection 29

Under these constraints, Wasm3’s garbage collection algorithm at-
tempts to free any allocated memory as soon as permissible for an
object’s lifetime. Garbage collectors can be measured using various
criteria, such as memory and processing overhead, throughput, or
pause times. Garbage collection is a vast topic of its own, with nu-
merous criteria by which algorithms can be judged, e.g. complexity,
pause latencies, or throughput and is beyond the scope of this eval-
uation. Wasm3’s current garbage collection method only possesses
minimal functionality and was not fine-tuned for particular metrics.
Wilson gives a comprehensive overview of popular garbage collection
techniques in his survey [54].

system data lifetime

Reoptimization Compiled Func-
tion Code

Until a newer version exists
and the last activation fin-
ishes

Polymorphic In-
line Caches

Code Stubs While the encompassing
code lives

Reoptimization Per-Function
call site list

While the call site code lives

On-Stack-
Replacement

Safepoints-to-
Wasm hash
tables

Entire program execution
time (per table); Function
lifetime (per entry);

Profiling In-Line Meta-
data (e.g. call
frequencies)

While the associated func-
tion or PIC lives

On-Stack-
Replacement

Backtrace While any of the functions
replaced on-stack are still ac-
tive

Table 2: Dynamic data structures used by Wasm3 extension

The dynamic data associated with a function’s compilation cannot
be freed once the function has been recompiled because at the time
of recompilation, an invocation of the old code may exist on the call
stack. We need to track whether a version of code is currently active
or not, at which point we can free associated data. To store this infor-
mation, we check if an invocation of a function is the first to be placed
on the call stack in the op_Entry instruction. If so, we allocate space on
the native stack and move pointers to dynamic function data out of
the struct M3Function onto the stack.

To account for separate recompiled versions of a function being
nested on the call stack, we additionally associate a monotonic re-
compilation number with each function. Exiting a function uses the
number to check if it has been recompiled during its runtime and
releases the data previously stored on the stack accordingly.

30 implementation

With this manual garbage collection approach, memory is made
available as soon as possible. The collection routine also removes
any table entries associated with safepoints and deletes list entries in
the function’s callee’s metadata. The code responsible for collecting
garbage when entering and exiting a function is outlined in Listing 5.

Some features, such as polymorphic inline caches, need to access
the dynamic data pointers saved on the stack during execution to
record new call sites. To make the stack-local data available further
down the call chain of the op_Entry instruction, a pointer to it is stored
in the function’s descriptor struct M3Function. The pointer allows for
making runtime modifications to dynamic metadata while it is cap-
tured in a function’s root invocation.

M3CodeOwnership ownedPages = TakeOwnership(function);
if (!function->activeCodePage || ownedPages.pagesOpen) {

function->activeCodePage = &ownedPages;

}

m3ret_t r = nextOpImpl();

if (function->recompilation > ownedPages.recompilation) {

ReleaseGarbage(function, &ownedPages);

} else {

ReleaseOwnership(function, ownedPages);

}

function->activeCodePage = ownedPages.lastActive;

Listing 5: Garbage collection code addition to op_Entry

5
P R O F I L I N G

5.0.1 Methodology

The developed dynamic optimization framework was profiled on the
ESP32C3 and the MIMXRT1170-EVK. The methods and WebAssem-
bly modules were chosen to record data on two separate attributes:
memory characteristics and processing overhead. Both features are
useful for an initial evaluation of employing a complex, adaptive
WASM optimization framework on SoCs.

The profiling system of Wasm3 was parameterized to trigger re-
optimization at 15000 invocations, with a counter half-time of four
seconds.

5.0.1.1 Processing Overhead

The CoreMark1 benchmark is designed to assess a microcontroller’s
speed using a single, comparable number. CoreMark was compiled to
WebAssembly bytecode and executed using the modified Wasm3 in-
terpreter with required bindings, such as timing functions, provided
as module imports. CoreMark is a suite of benchmarks containing
the following algorithms: list processing, common matrix operations,
state machine operations, and cyclic redundancy checking. A total of
25 executions per benchmarked configuration were taken to account
for statistical errors. Every execution included a complete reinitializa-
tion of the interpreter.

5.0.1.2 Memory profiling

Within the context of dynamic compilation, the runtime behavior of
memory allocations and deallocations during recompilations is par-
ticularly interesting. To not only record the overall heap usage, but
the frequency, size, and time distribution of the interpreter’s alloca-
tions, a heap trace was recorded for programs of varying complex-
ity on both hardware platforms. Because of a lack of WebAssembly-
compatible benchmarks that have sufficient code size but do not re-
quire platform-specific bindings or an operating system, two bench-
marks were developed for the purpose of collecting heap data. Large
module sizes are advantageous because they allow measuring the
memory impact of having frequent recompilations.

Each data point was transmitted to the development host using a
UART connection at the moment of occurrence. As a result of UART’s
bandwidth and latency, the program took considerably longer to fin-
ish execution under active heap tracing. The order of allocations to

1 https://www.eembc.org/coremark/

31

https://www.eembc.org/coremark/

32 profiling

each other is not affected by this, but the absolute timestamps of all
memory operations are skewed non-linearly by this overhead.

Every feature discussed in Chapter 4 was included when profiling
the heap with dynamic optimization enabled.

5.0.1.3 WebAssembly Programs

benchmark instructions functions indirect calls

Serde 2718 24 0

CoreMark 3771 15 0

Interp 238633 2427 222

Table 3: Benchmark module characteristics

Table 3 outlines the different programs used when taking mea-
surements. The ’CoreMark’ benchmark was preexisting, but ’Serde’
and ’Interp’ were developed for profiling Wasm3 on our target hard-
ware as described in Section 5.0.1.2. To evaluate the influence of the
dynamic optimization framework, we require WASM modules with
multiple functions and indirect calls. The Serde and Interp bench-
marks perform the following functions:

serde iteratively serializes and deserializes structures to and from
memory, comparing the result to the original data.

interp instantiates and executes the ’Rhai’ interpreter. The Rhai in-
terpreter then executes a script that calculates the number of
primes smaller than N. This benchmark, by including an inter-
preter, allows for testing the execution of complex constructs
such as dynamic dispatch.

5.0.2 Processor Profiling

The average CoreMark result for each benchmarked feature-set is
shown in Table 4. The only noticeable performance decrease coincides
with the use of profiling and OSR, which are active in every config-
uration apart from ’All disabled’. The runtime overhead of enabling
recompilations correlates with the complexity of the compilation and
code generation; with the single-pass compiler of the Wasm3 inter-
preter, recompilations did not have a considerable effect on CoreMark
results.

5.0.3 Memory Profiling

In Figure 5 and Figure 6 every allocation, deallocation, and reallo-
cation is represented as a stem. The cumulative amount of memory
allocated by the runtime is displayed in blue and measured using the
right vertical axis. Note that the execution time of traced programs

profiling 33

configuration i .mxrt1170 esp32c3

All enabled 88 20.16

No polycaches 87.85 20.18

No recompliation 88.82 20.49

No polycaches & no recompila-
tion

88.66 20.44

All disabled 89.83 22.95

Table 4: CoreMark results

(a) No dynamic optimization (b) Dynamic optimization

Figure 5: Memory Trace: ESP32C3 ’Serde’

is slower when more memory operations are performed because of
transmission delays. Comparing the differences between the profiles
with optimizations enabled and disabled shows some interesting fea-
tures:

• Much of the increase in total memory consumption is related
to the additional metadata ancillary to the optimization frame-
work. This is seen when comparing the line graph after the ini-
tial compilation pass but before any recompilations have taken
place, at which point memory usage is higher with enabled op-
timization. Notably, the recompilations throughout a program’s
runtime do not considerably increase memory use, they free
and allocate similar amounts of memory.

• Although the total memory consumption is only fractionally
higher, dynamic optimization is associated with a considerable
amount of additional memory operations. Execution of the ’In-
terp’ benchmark under dynamic optimization performed 104811

memory operations, as opposed to 4176. As visible by the his-
togram, memory operations are distributed throughout the pro-
gram’s execution with optimization enabled, while being lim-
ited to runtime initialization and destruction without them.

34 profiling

(a) No dynamic optimization (b) Dynamic optimization

Figure 6: Memory Trace: i.MXRT1170 ’Interp’

• As seen with previous dynamic compilation systems, recompi-
lations are more frequent during the startup of a program [45].
Since the program optimizes functions primarily at the start of
execution, delays and pause times may be higher throughout
that timeframe.

The memory (de-)allocations performed when executing the ’In-
terp’ benchmark are classified in Table 5

configuration mem-ops mem-ops excl .
initializa-
tion

mem-ops per

recompila-
tion

All enabled 104811 67184 1101

All disabled 4176 NA NA

Table 5: ’Interp’ memory statistics

6
D I S C U S S I O N

6.1 interpretation

The results obtained in Chapter 5 show that an interpreter frame-
work required to enable dynamic- and speculative optimization of
WebAssembly is feasible on resource-constrained MCUs and SoCs.
The overall memory consumption of the interpreter did not consid-
erably increase from allocating ancillary structures for metadata and
recompiling functions. Total memory consumption can be influenced
by changing the recompilation strategy of Wasm3: because a map-
ping between abstract WebAssembly bytecode and compiled code is
required for all function safepoints, extending the potential recompi-
lation sites to additionally include other instructions would increase
memory use. Conversely, if we disable OSR and instead waited for
all invocations to exit, we would not require memory for storing safe-
point data at each op_Call instruction. For a basic WebAssembly dy-
namic optimization framework, supporting de-optimization and OSR
at call sites suffices. A likely reason for supporting safepoints beyond
the current implementation would be to allow for guarded specula-
tive optimizations, as every guard needs to function as a safepoint.

The disparity between the speed of ’All disabled’ and other con-
figurations show that the profiling system of Wasm3, namely record-
ing invocation and call edge frequencies, induce the most noticeable
performance penalty. Choosing to sample a WebAssembly module
instead of eagerly profiling every function invocation would likely
decrease the associated costs. In a finalized dynamic optimization sys-
tem, including native code generation, profiling for optimized func-
tions should be enabled on demand based on other observances, as
implemented by previous runtimes described in Section 2.3.1.5.

As visible in Figure 6 and Table 5, unlike the total memory con-
sumption, the number of allocations and deallocations performed
by the interpreter increased considerably. This number can be low-
ered by choosing different data structures for storing metadata and
recompiled functions: The Wasm3 extensions, except for the mapping
of safepoints described in Section 4.2.1, store additional metadata in
linked lists that allocate each node separately. We could replace most
lists with hash tables or dynamic arrays, decreasing the number of
allocations performed at the cost of potentially more wasted memory.
Whether such a tradeoff can increase resulting performance depends
on different factors such as the hardware platform, the type of mem-
ory used, and the allocation strategy.

To conclude, although the experimental extension of Wasm3 devel-
oped in this paper allows for dynamically optimizing WASM pro-
grams on the target environments, known engineering practices can
further improve and tailor the runtime to increase performance.

35

36 discussion

6.2 code generation

Of course, on top of the features added to Wasm3, a complete Just-
In-Time compilation system typically generates native machine code.
Because WebAssembly functions are only recompiled using the pre-
existing Wasm3 compiler, which generates threaded code in a single
pass, the cost of recompilation is lower than if we were to generate
machine instructions. However, while not being able to directly mea-
sure the impact of native code compilation, we can refer to previous
work to evaluate the potential and overhead it would entail.

The following sections discuss the expected cost and benefit of ex-
tending Wasm3 to a full JiT-supporting interpreter.

6.2.1 Cost of code generation

Depending on the chosen intermediate representations, optimizations,
and algorithms for emitting instructions, the speed and space require-
ments of code generation can widely vary. As a general rule, the more
optimized constructed code has to be, the higher the associated costs
are.

Prominent JiT compilers, such as google chrome’s V8 [6] use costly
techniques to generate their most optimized compilation tiers. Nießen
et al. found that TurboFan, V8’s optimizing compiler, takes an average
of 500 to 1000 ms to compile a WebAssembly module of 1 MB; the
compilation time scaling linearly with module size [33]. Their anal-
ysis of memory consumption shows that compilation uses between
32 and 64 MB for modules up to around 256 KB. However, memory
consumption scales faster than the corresponding size of the module.
Finally, TurboFan produces machine code that is usually two to three
times larger than the source’s WASM bytecode length.

Nießen et al’s analysis was conducted using a workstation equipped
with a powerful processor and large amounts of DRAM; code gener-
ation has to be far more efficient in an MCU-compatible JiT compiler.
The blowup factor of resulting native code, as compared to source
bytecodes, is less of a concern. Currently, Wasm3 translates most byte-
codes to a function pointer that is 4 bytes wide on targetted platforms.
As such, the IR of Wasm3 already has a comparable code size increase,
which the memory profile shows to work with little available mem-
ory.

In previous work, fast, efficient code generation in JiT compilers
was facilitated by the use of fewer, less costly steps in the compilation
pipeline. For instance, linear scan register allocation requires only two
passes over the IR to allocate registers. MicroJiT, an efficient Java byte-
code compiler by Chen and Olukotun [10], produced native code that,
in some cases, could rival the performance of the Sun server compiler
at the time, while requiring substantially less time and memory. Their
compiler required an average of five thousand instructions per pro-
cessed bytecode, faster than Sun’s server compiler by a factor of 12.
The implementation also required little dynamic memory, allowing

6.3 future work 37

for the compilation of Java methods up to 1 KB with a memory buffer
of 250 KB.

While a compiler such as MicroJiT can produce optimized code
without much overhead, its requirements might still be incompatible
with the specifications of low-cost MCUs like the ESP32C3. For these
devices, dynamic memory use and compilation pauses can be further
reduced by employing baseline compilers that perform little to no op-
timizations when generating instructions. For example, the Sun client
compiler, integrated into the Java runtime as a baseline compiler, used
only half as much dynamic memory as MicroJiT.

To summarize, while the most aggressive compilers like TurboFan
are likely to be incompatible with small SoCs, one can implement
native compilers that produce somewhat less optimal code with far
fewer resource constraints. Further tradeoffs between code perfor-
mance and compilation efficiency can be made depending on the
specific target device and its specifications.

6.2.2 Benefit of code generation

Extending Wasm3’s dynamic optimization framework with native
code generation promises considerable performance benefits, even if
the native compiler cannot apply all state-of-the-art transformations
and algorithms.

Titzer compared the execution performance of different WebAssem-
bly runtimes on benchmarks of varying lengths to observe the trade-
off between fast and optimal code generation [47]. He found that,
with increasing program runtimes, Just-in-Time compilers gain an
advantage over Wasm3, which was the fastest WASM interpreter he
tested. Interestingly, even baseline compilers such as V8’s Liftoff are
still competitive when compared to high-tier compilers; unlike Wasm3,
which took up to 10 times as long as TurboFan, and 5 times as long
as Liftoff to complete long-running benchmarks. Chen and Olukotun
observed similar results when comparing the speedup of different
Java JiT configurations [10].

As such, we can expect a substantial performance improvement
with the addition of code generation, regardless of the tradeoff made
between optimization and resource usage as discussed in Section 6.2.1.
The time saved on bytecode execution will likely compensate for the
overhead from profiling and other systems discussed in Section 6.1.

6.3 future work

The results obtained from implementing an MCU-compatible, We-
bAssembly dynamic optimization framework show that such use is
viable and with native code generation would likely outperform an
interpreter in general usage. In this section, potential further work on
the topic and new questions that arise from Wasm3’s evaluation are
discussed.

38 discussion

6.3.1 Next Steps

An obvious improvement to the experimental Wasm3 extension devel-
oped in this thesis is native code compilation. Comparing code gen-
eration’s performance impact in Section 6.2 implies that fully imple-
menting a WebAssembly JiT for constrained platforms would yield
substantial runtime performance gains. In addition, working code
generation is the foundation for further research on the topic.

With the complexities involved in profiling and native compilation,
I expect it to be beneficial to rework Wasm3’s intermediate represen-
tation or to develop a new WebAssembly research VM. Wasm3 was
developed as an ’Interpreter-Only’ runtime and does not have a com-
pilation pipeline that supports storing detailed profiling data about
instructions or to analyze the program’s data- and control flow. In-
stead, the single-pass compiler of Wasm3 directly converts bytecode
to executable code pages. While this model was sufficient for the pur-
pose of this thesis, adding code generation and speculative optimiza-
tions would likely benefit from a different bytecode representation.

6.3.2 Open Questions

Extending Wasm3’s capabilities, or developing a new VM with com-
plete JiT-compilation support, allows us to answer further questions
about dynamic- and speculative optimization of WebAssembly on
SoCs:

• How much do different WASM source languages benefit from
JiT compilation and speculative optimization?

• Can we place an upper bound on compilation latencies?

• What are the security implications of dynamically compiling
WebAssembly to machine code on embedded devices?

• Would separate tiers of optimization, as present in advanced
virtual machines, be beneficial?

Regarding the first point, most existing research evaluates the im-
pact of JiT compilation for runtimes that support either a single, or a
small set of similarly structured, source languages. The Java virtual
machine is an example of this: Most languages targetting the JVM
make use of concepts such as dynamic dispatch. With the hetero-
geneous landscape of WebAssembly-compatible languages, ranging
from C to JavaScript, languages may benefit differently from JiT com-
pilation.

Placing a bound on dynamic WebAssembly compilation latencies
would be especially relevant for real-time applications. Perhaps an
offline analysis of WASM bytecode could be used to attach a recom-
pilation cost to every function, and the interpreter can evaluate these
to make recompilation decisions.

6.4 related work 39

The third point relates to the strong memory guarantees WebAssem-
bly makes about a module: Accesses are always restricted to prede-
clared value locations or linear memory sections with known size. Ex-
ecuting native, just-in-time compiled code should preserve as many
guarantees about a program’s dynamics as possible. One of WebAssem-
bly’s advantages over native execution is the safety and memory guar-
antees achieved through its module sandboxing. If just-in-time com-
piled code couldn’t easily enforce the same restrictions, any perfor-
mance increases may be nullified.

6.4 related work

WebAssembly is a relatively new development, and most research on
it and its runtimes has been published over the past few years.

Wang, in his 2022 study of standalone WebAssembly runtimes,
evaluates the characteristics and performance of five separate WASM
runtimes, some of which perform JiT compilation [51]. Notably, he
compares each runtime to native code execution and the impact of
JiT compilation.

Nießen et al. develop a method of code caching for established
WebAssembly runtimes to improve performance and reduce resource
usage [33]. Their paper also includes a fine-grained evaluation of V8’s
compilation profile regarding memory and processing time costs.

Titzer presents a fast in-place WASM interpreter, that improves
upon the startup delay of many existing interpreters and baseline
compilers [47]. The article also contains a comprehensive comparison
of existing WebAssembly interpreters and JiT compilers, including
the V8 and Spidermonkey execution engines.

Xu and Kjolstad describe their ’copy-and-patch’ compilation tech-
nique and showcase its application on WebAssembly bytecode [55].
The strategy aims to reduce the cost of compilation while achieving
high-quality compilation results. For this, they leverage existing com-
pilers to generate templates, which are instantiated at runtime with
concrete values and emitted.

6.5 conclusion

The extensions added to Wasm3 follow known dynamic optimization
strategies mainly developed through research on the Smalltalk, SELF,
and Java languages. The extensions were developed with resource-
constrained target hardware in mind. Some data structures and al-
gorithms, like the invocation counter decaying method or the on-
stack replacement technique, were adjusted to be viable in resource-
constrained environments, while some strategies, like using task-based
sampling methods, were excluded from Wasm3 due to likely platform
complications.

Evaluation of memory and processing performance shows that the
underlying system to enable dynamic optimization of WebAssembly
are feasible on MCUs. As discussed in Section 6.2, finalizing the JiT

40 discussion

by adding native code compilation is expected to allow for signifi-
cant increases to WASM’s performance, although the implemented
code generation has to be carefully designed to stay within resource
bounds.

Continuing past this initial evaluation, there are further questions
concerning efficient JiT compilation of WebAssembly left to answer
in future research.

B I B L I O G R A P H Y

[1] Ole Agesen and David Detlefs. Mixed-Mode Bytecode Execution.
Tech. rep. USA, 2000.

[2] ARM Limited. Cortex-M4 Technical Reference Manual. Version r0p0.
Dec. 22, 2009.

[3] ARM Limited. Armv7-M Architecture Reference Manual. Version E.e.
Feb. 25, 2021.

[4] M. Arnold, S.J. Fink, D. Grove, M. Hind, and P.F. Sweeney. “A
Survey of Adaptive Optimization in Virtual Machines.” In: Pro-
ceedings of the IEEE 93.2 (Feb. 2005), pp. 449–466. doi: 10.1109/
jproc.2004.840305.

[5] Matthew Arnold, Stephen Fink, David Grove, Michael Hind,
and Peter F. Sweeney. “Adaptive optimization in the Jalapeño
JVM.” In: ACM SIGPLAN Notices 35.10 (Oct. 2000), pp. 47–65.
doi: 10.1145/354222.353175.

[6] Clemens Backes. Liftoff: a new baseline compiler for WebAssembly
in V8. Ed. by Clemens Backes. Aug. 20, 2018. url: https://
web.archive.org/web/20220815095400/https://v8.dev/blog/

liftoff.

[7] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. “Dy-
namo: a transparent dynamic optimization system.” In: ACM
SIGPLAN Notices 35.5 (May 2000), pp. 1–12. doi: 10 . 1145 /

358438.349303.

[8] C. Chambers, D. Ungar, and E. Lee. “An efficient implemen-
tation of SELF a dynamically-typed object-oriented language
based on prototypes.” In: ACM SIGPLAN Notices 24.10 (Oct.
1989), pp. 49–70. doi: 10.1145/74878.74884.

[9] Craig Chambers and David Ungar. “Making pure object-oriented
languages practical.” In: ACM SIGPLAN Notices 26.11 (Nov. 1991),
pp. 1–15. doi: 10.1145/118014.117955.

[10] Michael Chen and Kunle Olukotun. Targeting Dynamic Compi-
lation for Embedded Environments. Tech. rep. July 2001. doi: 10.
21236/ada419605.

[11] Michał Cierniak, Guei-Yuan Lueh, and James M. Stichnoth. “Prac-
ticing JUDO.” In: ACM SIGPLAN Notices 35.5 (May 2000), pp. 13–
26. doi: 10.1145/358438.349306.

[12] David Detlefs and Ole Agesen. “Inlining of Virtual Methods.”
In: ECOOP’ 99 — Object-Oriented Programming. Springer Berlin
Heidelberg, 1999, pp. 258–277. doi: 10.1007/3- 540- 48743-
3_12.

41

https://doi.org/10.1109/jproc.2004.840305
https://doi.org/10.1109/jproc.2004.840305
https://doi.org/10.1145/354222.353175
https://web.archive.org/web/20220815095400/https://v8.dev/blog/liftoff
https://web.archive.org/web/20220815095400/https://v8.dev/blog/liftoff
https://web.archive.org/web/20220815095400/https://v8.dev/blog/liftoff
https://doi.org/10.1145/358438.349303
https://doi.org/10.1145/358438.349303
https://doi.org/10.1145/74878.74884
https://doi.org/10.1145/118014.117955
https://doi.org/10.21236/ada419605
https://doi.org/10.21236/ada419605
https://doi.org/10.1145/358438.349306
https://doi.org/10.1007/3-540-48743-3_12
https://doi.org/10.1007/3-540-48743-3_12

42 bibliography

[13] L. Peter Deutsch and Allan M. Schiffman. “Efficient implemen-
tation of the smalltalk-80 system.” In: Proceedings of the 11th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages - POPL ’84. ACM Press, 1984. doi: 10.1145/800017.
800542.

[14] Espressif Systems. ESP-IDF Programming Guide. Version 4.4.2.
Aug. 2, 2022. url: https://web.archive.org/web/20221231120936/
https://docs.espressif.com/projects/esp-idf/en/v4.4.2/

esp32c3/get-started/index.html (visited on 09/05/2022).

[15] Espressif Systems. ESP32-C3 Technical Reference Manual. Version 0.6.
2022. url: https://web.archive.org/web/20221231120859/
https://www.espressif.com/sites/default/files/documentation/

esp32-c3_technical_reference_manual_en.pdf (visited on
09/04/2022).

[16] S.J. Fink and Feng Qian. “Design, implementation and eval-
uation of adaptive recompilation with on-stack replacement.”
In: International Symposium on Code Generation and Optimization,
2003. CGO 2003. IEEE Comput. Soc, 2003. doi: 10.1109/cgo.
2003.1191549.

[17] Andreas Gal, Christian W. Probst, and Michael Franz. “Hot-
pathVM: An Effective JIT Compiler for Resource-constrained
Devices.” In: Proceedings of the 2nd international conference on
Virtual execution environments - VEE ’06. ACM Press, 2006. doi:
10.1145/1134760.1134780.

[18] Gabriel Gaspar, Peter Fabo, Michal Kuba, Juraj Dudak, and Ed-
uard Nemlaha. “MicroPython as a Development Platform for
IoT Applications.” In: Intelligent Algorithms in Software Engineer-
ing. Springer International Publishing, 2020, pp. 388–394. doi:
10.1007/978-3-030-51965-0_34.

[19] Damien George, Paul Sokolovsky, and contributors. MicroPy-
thon documentation: Memory Management. Ed. by Damien George,
Paul Sokolovsky, and contributors. Aug. 18, 2022. url: https:
/ / web . archive . org / web / 20220818180929 / https : / / docs .

micropython.org/en/latest/develop/memorymgt.html.

[20] Dan Gohman. WebAssembly System Interface. Tech. rep. Bytecode
Alliance, Nov. 12, 2019. url: https://web.archive.org/web/
20220824104852 / https : / / github . com / bytecodealliance /

wasmtime / blob / main / docs / WASI - overview . md (visited on
08/17/2022).

[21] Christian Häubl, Christian Wimmer, and Hanspeter Mössen-
böck. “Context-sensitive trace inlining for Java.” In: Computer
Languages, Systems and Structures 39.4 (Dec. 2013), pp. 123–141.
doi: 10.1016/j.cl.2013.04.002.

[22] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. “An Em-
pirical Study of Real-World WebAssembly Binaries.” In: Proceed-
ings of the Web Conference 2021. ACM, Apr. 2021. doi: 10.1145/
3442381.3450138.

https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://web.archive.org/web/20221231120936/https://docs.espressif.com/projects/esp-idf/en/v4.4.2/esp32c3/get-started/index.html
https://web.archive.org/web/20221231120936/https://docs.espressif.com/projects/esp-idf/en/v4.4.2/esp32c3/get-started/index.html
https://web.archive.org/web/20221231120936/https://docs.espressif.com/projects/esp-idf/en/v4.4.2/esp32c3/get-started/index.html
https://web.archive.org/web/20221231120859/https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://web.archive.org/web/20221231120859/https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://web.archive.org/web/20221231120859/https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://doi.org/10.1109/cgo.2003.1191549
https://doi.org/10.1109/cgo.2003.1191549
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1007/978-3-030-51965-0_34
https://web.archive.org/web/20220818180929/https://docs.micropython.org/en/latest/develop/memorymgt.html
https://web.archive.org/web/20220818180929/https://docs.micropython.org/en/latest/develop/memorymgt.html
https://web.archive.org/web/20220818180929/https://docs.micropython.org/en/latest/develop/memorymgt.html
https://web.archive.org/web/20220824104852/https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-overview.md
https://web.archive.org/web/20220824104852/https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-overview.md
https://web.archive.org/web/20220824104852/https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-overview.md
https://doi.org/10.1016/j.cl.2013.04.002
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138

bibliography 43

[23] Urs Hölzle, Craig Chambers, and David Ungar. “Optimizing
Dynamically-Typed Object-Oriented Languages With Polymor-
phic Inline Caches.” In: Proceedings of the European Conference
on Object-Oriented Programming. ECOOP ’91. Berlin, Heidelberg:
Springer-Verlag, 1991, pp. 21–38. isbn: 3540542620.

[24] Urs Hölzle, Craig Chambers, and David Ungar. “Debugging
optimized code with dynamic deoptimization.” In: ACM SIG-
PLAN Notices 27.7 (July 1992), pp. 32–43. doi: 10.1145/143103.
143114.

[25] Urs Hölzle and David Ungar. “A third-generation SELF im-
plementation.” In: Proceedings of the ninth annual conference on
Object-oriented programming systems, language, and applications -
OOPSLA ’94. ACM Press, 1994. doi: 10.1145/191080.191116.

[26] Urs Hölzle and David Ungar. “Optimizing dynamically-dispatched
calls with run-time type feedback.” In: ACM SIGPLAN Notices
29.6 (June 1994), pp. 326–336. doi: 10.1145/773473.178478.

[27] Martin Jacobsson and Jonas Willén. “Virtual Machine Execution
for Wearables Based on WebAssembly.” In: 13th EAI Interna-
tional Conference on Body Area Networks. Springer International
Publishing, 2020, pp. 381–389. doi: 10.1007/978-3-030-29897-
5_33.

[28] Kogge. “An Architectural Trail to Threaded-Code Systems.” In:
Computer 15.3 (Mar. 1982), pp. 22–32. doi: 10.1109/mc.1982.
1653970.

[29] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley.
The Java® Virtual Machine Specification. Feb. 28, 2013. url: https:
/ / web . archive . org / web / 20220709133447 / https : / / docs .

oracle.com/javase/specs/jvms/se7/html/index.html.

[30] Zoltán Majó. Compilation in the HotSpot VM. Ed. by Zoltán Majó.
Oracle Corporation. 2015. url: https://web.archive.org/
web/20220719130212/https://ethz.ch/content/dam/ethz/

special-interest/infk/inst-cs/lst-dam/documents/Education/

Classes/Fall2015/210_Compiler_Design/Slides/hotspot.

pdf.

[31] Niko Mäkitalo, Tommi Mikkonen, Cesare Pautasso, Victor Bankowski,
Paulius Daubaris, Risto Mikkola, and Oleg Beletski. “WebAssem-
bly Modules as Lightweight Containers for Liquid IoT Applica-
tions.” In: Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2021, pp. 328–336. doi: 10.1007/978-3-030-
74296-6_25.

[32] Steven Massey and Volodymyr Shymanskyy. Wasm3. Aug. 31,
2022. url: https://web.archive.org/web/20220827003837/
https://github.com/wasm3/wasm3 (visited on 09/05/2022).

https://doi.org/10.1145/143103.143114
https://doi.org/10.1145/143103.143114
https://doi.org/10.1145/191080.191116
https://doi.org/10.1145/773473.178478
https://doi.org/10.1007/978-3-030-29897-5_33
https://doi.org/10.1007/978-3-030-29897-5_33
https://doi.org/10.1109/mc.1982.1653970
https://doi.org/10.1109/mc.1982.1653970
https://web.archive.org/web/20220709133447/https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://web.archive.org/web/20220709133447/https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://web.archive.org/web/20220709133447/https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://web.archive.org/web/20220719130212/https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Fall2015/210_Compiler_Design/Slides/hotspot.pdf
https://web.archive.org/web/20220719130212/https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Fall2015/210_Compiler_Design/Slides/hotspot.pdf
https://web.archive.org/web/20220719130212/https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Fall2015/210_Compiler_Design/Slides/hotspot.pdf
https://web.archive.org/web/20220719130212/https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Fall2015/210_Compiler_Design/Slides/hotspot.pdf
https://web.archive.org/web/20220719130212/https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Fall2015/210_Compiler_Design/Slides/hotspot.pdf
https://doi.org/10.1007/978-3-030-74296-6_25
https://doi.org/10.1007/978-3-030-74296-6_25
https://web.archive.org/web/20220827003837/https://github.com/wasm3/wasm3
https://web.archive.org/web/20220827003837/https://github.com/wasm3/wasm3

44 bibliography

[33] Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B.
Kent. “Insights into WebAssembly: Compilation Performance
and Shared Code Caching in Node.Js.” In: Proceedings of the
30th Annual International Conference on Computer Science and Soft-
ware Engineering. CASCON ’20. Toronto, Ontario, Canada: IBM
Corp., 2020, pp. 163–172.

[34] NXP Semiconductors. i.MX RT1170 MCU Family – Fact Sheet.
Jan. 8, 2021. url: https://web.archive.org/web/20221005234514/
http://www.nxp.com/docs/en/fact- sheet/i.MX- RT1170-

FS.pdf (visited on 12/07/2022).

[35] NXP Semiconductors. i.MX RT1170 Processor ReferenceManual.
May 2021.

[36] Oracle. Java Card data sheet. 2019. url: https://web.archive.
org/web/20220627130905/https://www.oracle.com/technetwork/

java/javacard/overview/java-card-data-sheet-19-01-07-

5250140.pdf (visited on 08/23/2022).

[37] Gregor Peach, Runyu Pan, Zhuoyi Wu, Gabriel Parmer, Christo-
pher Haster, and Ludmila Cherkasova. “eWASM: Practical Soft-
ware Fault Isolation for Reliable Embedded Devices.” In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 39.11 (Nov. 2020), pp. 3492–3505. doi: 10.1109/tcad.
2020.3012647.

[38] RISC-V Foundation. Risc-V specification license. Ed. by Risc-V
contributing members. Feb. 2, 2017. url: https://web.archive.
org/web/20220904152132/https://github.com/riscv/riscv-

isa-manual/blob/master/LICENSE.

[39] RISC-V Foundation. The RISC-V Instruction Set Manual, Volume
I: User-Level ISA. Ed. by Andrew Waterman, Krste Asanovic,
and SiFive Inc. Version 2019121. Dec. 2019.

[40] John R. Rose. “Bytecodes meet combinators.” In: Proceedings of
the Third Workshop on Virtual Machines and Intermediate Languages
- VMIL ’09. ACM Press, 2009. doi: 10.1145/1711506.1711508.

[41] Andreas Rossberg. GC Proposal for WebAssembly. Tech. rep. W3C,
Aug. 17, 2022. url: https://web.archive.org/web/20220824104907/
https://github.com/WebAssembly/gc/blob/main/README.md.

[42] Scott Logic. The State of WebAssembly 2022. Ed. by Colin Eber-
hardt. June 20, 2022. url: https://web.archive.org/web/
20220824105722/https://blog.scottlogic.com/2022/06/20/

state-of-wasm-2022.html.

[43] Robbert Gurdeep Singh and Christophe Scholliers. “WARDuino:
a dynamic WebAssembly virtual machine for programming mi-
crocontrollers.” In: Proceedings of the 16th ACM SIGPLAN Inter-
national Conference on Managed Programming Languages and Run-
times - MPLR 2019. ACM Press, 2019. doi: 10.1145/3357390.
3361029.

https://web.archive.org/web/20221005234514/http://www.nxp.com/docs/en/fact-sheet/i.MX-RT1170-FS.pdf
https://web.archive.org/web/20221005234514/http://www.nxp.com/docs/en/fact-sheet/i.MX-RT1170-FS.pdf
https://web.archive.org/web/20221005234514/http://www.nxp.com/docs/en/fact-sheet/i.MX-RT1170-FS.pdf
https://web.archive.org/web/20220627130905/https://www.oracle.com/technetwork/java/javacard/overview/java-card-data-sheet-19-01-07-5250140.pdf
https://web.archive.org/web/20220627130905/https://www.oracle.com/technetwork/java/javacard/overview/java-card-data-sheet-19-01-07-5250140.pdf
https://web.archive.org/web/20220627130905/https://www.oracle.com/technetwork/java/javacard/overview/java-card-data-sheet-19-01-07-5250140.pdf
https://web.archive.org/web/20220627130905/https://www.oracle.com/technetwork/java/javacard/overview/java-card-data-sheet-19-01-07-5250140.pdf
https://doi.org/10.1109/tcad.2020.3012647
https://doi.org/10.1109/tcad.2020.3012647
https://web.archive.org/web/20220904152132/https://github.com/riscv/riscv-isa-manual/blob/master/LICENSE
https://web.archive.org/web/20220904152132/https://github.com/riscv/riscv-isa-manual/blob/master/LICENSE
https://web.archive.org/web/20220904152132/https://github.com/riscv/riscv-isa-manual/blob/master/LICENSE
https://doi.org/10.1145/1711506.1711508
https://web.archive.org/web/20220824104907/https://github.com/WebAssembly/gc/blob/main/README.md
https://web.archive.org/web/20220824104907/https://github.com/WebAssembly/gc/blob/main/README.md
https://web.archive.org/web/20220824105722/https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://web.archive.org/web/20220824105722/https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://web.archive.org/web/20220824105722/https://blog.scottlogic.com/2022/06/20/state-of-wasm-2022.html
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3357390.3361029

bibliography 45

[44] Benedikt Spies and Markus Mock. “An Evaluation of WebAssem-
bly in Non-Web Environments.” In: 2021 XLVII Latin American
Computing Conference (CLEI). IEEE, Oct. 2021. doi: 10 . 1109 /

clei53233.2021.9640153.

[45] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki
Komatsu, and Toshio Nakatani. “Design and evaluation of dy-
namic optimizations for a Java just-in-time compiler.” In: ACM
Transactions on Programming Languages and Systems 27.4 (July
2005), pp. 732–785. doi: 10.1145/1075382.1075386.

[46] Antero Taivalsaari and Tommi Mikkonen. “A Taxonomy of IoT
Client Architectures.” In: IEEE Software 35.3 (May 2018), pp. 83–
88. doi: 10.1109/ms.2018.2141019.

[47] Ben L. Titzer. “A fast in-place interpreter for WebAssembly.” In:
Proceedings of the ACM on Programming Languages 6.OOPSLA2

(Oct. 2022), pp. 646–672. doi: 10.1145/3563311.

[48] Raoul-Gabriel Urma. “Alternative Languages for the JVM.” In:
Java magazine (July 2014), pp. 5–11. url: https://archive.org/
details/JavaMagazine2014.0708/mode/2up.

[49] Brian Vermeer. JVM Ecosystem Report 2020. Ed. by Brian Ver-
meer. Feb. 5, 2020. url: https : / / web . archive . org / web /

20220824104904 / https : / / snyk . io / blog / jvm - ecosystem -

report-2020/.

[50] W3C. WebAssembly JavaScript Interface. Ed. by Ms2ger (Igalia).
Apr. 19, 2022. url: https://web.archive.org/web/20220515191659/
https://www.w3.org/TR/2022/WD-wasm-js-api-2-20220419/.

[51] Wenwen Wang. “How Far We’ve Come – A Characterization
Study of Standalone WebAssembly Runtimes.” In: 2022 IEEE In-
ternational Symposium on Workload Characterization (IISWC). IEEE,
Nov. 2022. doi: 10.1109/iiswc55918.2022.00028.

[52] WebAssembly Community Group. WebAssembly Specification. Ed.
by Andreas Rossberg. Aug. 11, 2022. url: https://web.archive.
org/web/20220824104926/https://webassembly.github.io/

spec/core/.

[53] John Whaley. “A portable sampling-based profiler for Java vir-
tual machines.” In: Proceedings of the ACM 2000 conference on
Java Grande - JAVA ’00. ACM Press, 2000. doi: 10.1145/337449.
337483.

[54] Paul R. Wilson. “Uniprocessor Garbage Collection Techniques.”
In: IWMM. 1992.

[55] Haoran Xu and Fredrik Kjolstad. “Copy-and-patch compilation:
a fast compilation algorithm for high-level languages and byte-
code.” In: Proceedings of the ACM on Programming Languages
5.OOPSLA (Oct. 2021), pp. 1–30. doi: 10.1145/3485513.

[56] Sungjoo Yoo and A.A. Jerraya. “Introduction to hardware ab-
straction layers for SoC.” In: 2003 Design, Automation and Test
in Europe Conference and Exhibition. IEEE Comput. Soc. doi: 10.
1109/date.2003.1253629.

https://doi.org/10.1109/clei53233.2021.9640153
https://doi.org/10.1109/clei53233.2021.9640153
https://doi.org/10.1145/1075382.1075386
https://doi.org/10.1109/ms.2018.2141019
https://doi.org/10.1145/3563311
https://archive.org/details/JavaMagazine2014.0708/mode/2up
https://archive.org/details/JavaMagazine2014.0708/mode/2up
https://web.archive.org/web/20220824104904/https://snyk.io/blog/jvm-ecosystem-report-2020/
https://web.archive.org/web/20220824104904/https://snyk.io/blog/jvm-ecosystem-report-2020/
https://web.archive.org/web/20220824104904/https://snyk.io/blog/jvm-ecosystem-report-2020/
https://web.archive.org/web/20220515191659/https://www.w3.org/TR/2022/WD-wasm-js-api-2-20220419/
https://web.archive.org/web/20220515191659/https://www.w3.org/TR/2022/WD-wasm-js-api-2-20220419/
https://doi.org/10.1109/iiswc55918.2022.00028
https://web.archive.org/web/20220824104926/https://webassembly.github.io/spec/core/
https://web.archive.org/web/20220824104926/https://webassembly.github.io/spec/core/
https://web.archive.org/web/20220824104926/https://webassembly.github.io/spec/core/
https://doi.org/10.1145/337449.337483
https://doi.org/10.1145/337449.337483
https://doi.org/10.1145/3485513
https://doi.org/10.1109/date.2003.1253629
https://doi.org/10.1109/date.2003.1253629

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Structure of this work

	2 Background
	2.1 WebAssembly
	2.2 WebAssembly on embedded systems
	2.2.1 WebAssembly as an alternative to native code
	2.2.2 WebAssembly as an alternative to interpreted languages
	2.2.3 WebAssembly as an alternative to the JVM

	2.3 Interpreter Optimizations
	2.3.1 JiT-compilation Strategies

	3 Design
	3.1 Technologies
	3.1.1 ESP32-C3
	3.1.2 MIMXRT1170-EVK
	3.1.3 Development Framework
	3.1.4 Wasm3

	3.2 Dynamic Optimization
	3.2.1 Profiling
	3.2.2 Optimization & Integration

	4 Implementation
	4.1 Profiling
	4.1.1 Function invocation frequency
	4.1.2 Target invocation frequency
	4.1.3 Function Call-stacks

	4.2 Optimization & Integration
	4.2.1 On-Stack Replacement
	4.2.2 Recompilation
	4.2.3 Polymorphic Inline Caches

	4.3 Garbage Collection

	5 Profiling
	5.0.1 Methodology
	5.0.2 Processor Profiling
	5.0.3 Memory Profiling

	6 Discussion
	6.1 Interpretation
	6.2 Code Generation
	6.2.1 Cost of code generation
	6.2.2 Benefit of code generation

	6.3 Future Work
	6.3.1 Next Steps
	6.3.2 Open Questions

	6.4 Related Work
	6.5 Conclusion

	Bibliography

