Chair for Security in Information Technology
TUM School of Computation, Information and Technology
Technical University of Munich

Cryptographic Implementations in
Jasmin: High-Assurance
Constant-Time CROSS

Konrad Winslow

—_ = - T —eg - lﬁ‘

Cryptographic Implementations
in Jasmin: High-Assurance
Constant-Time CROSS

Konrad Winslow

Chair for Security in Information Technology
TUM School of Computation, Information and Technology
Technical University of Munich

Cryptographic Implementations
in Jasmin: High-Assurance
Constant-Time CROSS

Konrad Winslow

Practical project

at the TUM School of Computation, Information and Technology of the Technical University
of Munich.

Examiner:
Prof. Dr.-Ing.Georg Sigl

Supervisor:
M.Sc. Jonas Schupp

Submitted:
Munich, December 31, 2024

Abstract

Modern computer systems, like servers, microcontrollers, or edge devices, all require crypto-
graphic schemes to secure their communication. Most schemes, as defined by standardizing
organizations, are cryptographically secure: they cannot be compromised by analysis of public
in- and outputs. However, a real-world application of a scheme requires more criteria, such as
performance, side-channel resistance, and the soft- or hardware implementation to be error-
free. Direct assembly-level programming is the most common way to fulfill these properties,
because high-level languages such as C may introduce side-channel leakage of secret data and
don’t allow for fine-grained optimization to achieve maximum performance. While perfor-
mance is measurable, programming errors of popular cryptographic implementations often
go unnoticed for prolonged periods and compromise security once discovered. This can be
both due to typical, logical errors in the code, but increasingly due to side-channel leakage that
exposes secret values via some undefined interface of a device, for example from fluctuations
in the power-consumption, the execution time, or memory accesses observable by an attacker.
This matter is futher complicated by optimizing compilers which can introduce side-channel
leakage that is not present in the source code of an algorithm.

Jasmin addresses this issue by allowing for the formal verification of cryptographic soft-
ware. Jasmin comprises a toolchain for the development of verifiably correct programs: its
programming language gives users fine control over the exact behavior that the compiled as-
sembly will have, such as which registers are used to store intermediate values, and what exact
machine-instruction is used for an expression. Jasmin’s compiler is formally verified in Coq to
produce machine-code that preserves the semantics of a program, meaning that the compiler
won’t introduce unintended leakage. Further, Jasmin programs can be extracted to EasyCrypt,
a proof assistant for cryptographic schemes, that can be used to show the Jasmin program is
cryptographic constant-time and functionally correct. This project implements the Codes and
Restricted Objects Signature Scheme (CROSS) in Jasmin, verifies cryptographic constant time,
and evaluates the toolchain. The main contributions of this work are a verified, high-assurance
CROSS implementation usable as a library in other projects, a quantitative-, and a qualitative
evaluation of Jasmin,

vii

Contents

1 Introduction
1.1 Structure of thisWork

2 EasyCrypt

2.1 EasyCrypt Specifications
2.1.1 ExpressionLanguage
212 ModuleSystem
2.1.3 Probability distributions L L L oL
2.2 EasyCryptProofs
221 Ambientlogic L Lo
222 Programlogic Lo
3 Jasmin
3.1 Language
3.1.1 Top-level program o
3.1.2 Types . ..
3.1.3 Storageclasses
3.1.4 Expressions
315 Statements.
3.2 EasyCryptextraction.,
3.3 Constant-time checker L L L L
3.4 Safety-checker
4 Implementing CROSS with Jasmin
41 Overview e e
4.1.1 Fully functional Jasmin-language implementation of CROSS
4.1.2 Jasmin-language implementation of SHA-3
413 Clibrary-wrapper
414 Testbench and benchmarks
4.1.5 Constant-time verification L L.
4.1.6 EasyCrypt extraction and proofs
42 JasminProgram. L L
4.2.1 Cryptographic primitives L ...
4.2.2 Arithmetic primitives L oo
423 Algorithms and data-structures
43 Automated Tests
4.4 Cryptographic Constant-time Verification
4.4.1 Verification using EasyCrypt extraction
4.42 Verification using the constant-time checker

N

QG WWw W

o o O

10
11
11
12
13
14

15
16
16
16
16
16
16
17
17
17
18
19
20
21
21
22

4.5 Functional Correctness Properties
4.6 Limitations

5 Evaluation
51 Measurements e e e e
5.1.1 Methodology
52 Discussion. e e e e

6 Outlook

References

25
25
25
26

29

39

1 Introduction

With the widespread use of the internet, computer systems adopted cryptographic primitives
to secure and attest communication. Because it is non-trivial to design secure cryptographic
schemes, they are standardized by organizations and experts who assure a scheme meets a
certain level of security and give recommendations on its usage, such as by fixing secure pa-
rameters. However, implementing said standardized algorithms is another potential source of
errors: A bug or minor oversight can single-handedly compromise a system’s security. Cryp-
tographic algorithms are much more susceptible to implementation errors than conventional
programs, because security can be compromised even if the implementation is functionally
correct: Side-Channels can reveal secret information that would otherwise not be observable
through defined interfaces.

Ensuring security of a cryptographic algorithm’s implementation became even more difficult
with the widespread adoption of IoT, edge computing, and other embedded devices. Attackers,
easily able to physically access a device, can extract information via numerous side-channels
that were inaccessible in a client-server setting. Side-channels often arise because of physical
attributes of the machine that executes the algorithm. For example, certain microarchitectures
of x86 can have longer memory access times based on the memory address, which leaks in-
formation, even in functionally correct programs. Because high-level programming languages
obscure the underlying machine model, programmers still have to rely on assembly-level lan-
guages when writing side-channel resistant code. Assembly code is not portable between
different instruction sets, and is much more costly to develop. Still, human error regularly
leads to vulnerabilities in even the most used cryptographic libraries such as OpenSSL [38].
To make matters worse, the number of cryptographic schemes to implement for a system is
increasing due to the modern requirement for post-quantum-secure cryptography [12].

Jasmin [20] offers an alternative to assembly for implementing cryptography that aims to
mitigate aforementioned shortcomings. Jasmin’s semantics are formalized in Coq [21], and
it is formally verified that the compilation of Jasmin preserves these semantics, and does
not introduce common types of side-channel leakage. Furthermore, Jasmin programs can be
extracted as an EasyCrypt [18] model, which then allows reasoning about the Jasmin source
code, such as proving constant-time properties, functional correctness, and safety of all memory
accesses. Jasmin also offers a higher abstraction level than assembly, which makes code more
portable between different instruction set architectures.

This project aims to evaluate Jasmin for the implementation of advanced cryptographic
schemes and to lay out a structured approach for future usage. For this, the post-quantum
secure CROSS [9] signature scheme is implemented in Jasmin. CROSS is a novel post-quantum
secure, zero-knowledge signature algorithm, which is based on secure hashing and the syn-
drome decoding problem. Our implementation is verified cryptographic constant-time. Further,
we use EasyCrypt to develop proofs for side-channel leakage- and functional correctness prop-
erties. Lastly, the Jasmin implementation of CROSS is benchmarked and compared with an
existing CROSS implementation. The contributions of this project are: (i) A high assurance Jas-

1

min implementation of the CROSS signature scheme called CROSS-Jasmin, which can be used
as a library in other systems; (ii) cryptographic constant-time verification of CROSS-Jasmin,
which validates that the implementation does not leak secret data; (iii) a qualitative evaluation
of the Jasmin toolchain in regard to usability, advantages and technical limitations, and (iv), a
quantitative evaluation in the form of benchmarks.

1.1 Structure of this Work

The EasyCrypt framework for the modeling and formal, computer assisted verification of
cryptographic algorithms is explained in chapter 2. The Jasmin language, features, toolchain,
and its interaction with EasyCrypt are outlined in chapter 3. Chapter 4 describes the design
and realization of this project’s high assurance CROSS implementation ’CROSS-Jasmin’. It
introduces the reader to working with Jasmin in a practical setting, what pitfalls are likely to
arise, and how it differs from typical high-level language workflows. The results of the project
are discussed in chapter 5, including a discussion on advantages and limitations of Jasmin and
the implementation’s performance in comparison to the CROSS-C implementation. It also
references alternative languages and tools to Jasmin. Chapter 6 concludes the project and gives
a perspective on future work.

2 EasyCrypt

EasyCrypt [10, 18] is a framework for the modeling of cryptographic algorithms, development
of security proofs, and their automated, computer assisted validation. It was initially designed
to allow for game-based security proofs, which formalize adversaries playing "games", and
shows security by bounding the probability of events below certain thresholds [10, 36]. While
there were pre-existing tools for computer-checked game-based proofs at the time, EasyCrypt
aimed to allow for easier proofs, requiring less effort than in alternative frameworks. Algo-
rithms and games are modeled as imperative, stateful procedures in EasyCrypt, which have a
shared global memory and local variables. The procedures may query random oracles, whose
statistical distribution can be user-defined. Security can then be shown by relating the proba-
bilities of two procedure’s states to each other using some relation: for example showing that
distinguishing two plaintexts is just as likely as factoring numbers [10]. In addition to proof
methods supported by EasyCrypt itself, it integrates with off-the-shelf SMT solvers, such as
Z3 [27] or CVC5 [15], to discharge certain goals.

2.1 EasyCrypt Specifications

EasyCrypt’s specification language allows users to declare and define, variables, total func-
tions, data types, axioms/lemmas, and imperative, stateful modules. Total functions, variables,
and data types are treated as normal expressions within EasyCrypt, while modules model
cryptographic algorithms and become the subject of proofs and lemmas. As such, they cannot
be evaluated by EasyCrypt and are instead manipulated within proofs. The following sections
will give a brief overview of the specification language.

2.1.1 Expression Language

Listing 2.1.1 shows the definition of the algebraic datatype list, parameterized by the type ’a.
Functions on custom and built-int data types can be declared with the op keyword; these may be
recursive, but termination must be provable by EasyCrypt. Expressions also support lambda-
functions, and built-in operators can be user-defined on custom data types. Any declared
variables, types, and functions, can be used in procedural specifications and lemmas.

Types, variables, and operations may be left abstract. In that case, one only declares a name
and type, but omits a definition. Axioms allow reasoning about instances of abstract members.
For example, listing 2.1.1 declares an abstract monoid type, operations on it, and defines it via
axioms. Because axioms are assumed to be correct by EasyCrypt, care must be taken not to
introduce false or inconsistent statements.

Definitions, lemmas, proofs, and modules can be packaged as EasyCrypt theories, which
allows for their composition and reuse. Listing 2.1.2, for example, shows the definition of the
abstact theory MonoidDI, which is later instantiated with the type realp. Any axioms assumed

3

type 'a list = [Nil

| Cons of 'a & 'a list]. type monoid.
op len ['a] (acc : int, xs : 'a list) [op id : monoid.
:int = op (+) : monoid -> monoid -> monoid.
with xs = Nil => acc axiom LeftIdentity (x : monoid)
with xs = Cons y ys id + x = x.
=> len (acc + 1) ys. axiom RightIdentity (x : monoid)
op length ['a] (xs : 'a list) X + id = x.
: int = len 0 xs. axiom Associative (x y z : monoid)
op xs = Cons 0 (Cons 1 (Cons 2 Nil)). X+ (y+2z)=&+vy)+ z.

op n : int = length xs.

Listing 2.1.1 Functional EasyCrypt specification example.

by the abstract theory must be proven at instantiation. The standard library of EasyCrypt
includes multiple abstract and concrete theories that can be imported by users.

abstract theory MonoidDI.
clone include MonoidD.
axiom addmI: right_injective (+).
lemma mulOm_simpl x : zero * x = zero by apply mulOm.
lemma mulmO_simpl x : x * zero = zero by apply mulmO.
end MonoidDI.
clone include MonoidDI with
type t <- realp,
op zero <- of_real 0.0,
op MulMonoid.one <- of_real 1.0,
op (+) <= Rp.(C+),
op (*) <= Rp.C*)
proof * by smt(of_realK to_realP to_real_inj).

Listing 2.1.2 EasyCrypt theory definition and instantiation [18, Xreal.ec].

2.1.2 Module System

Modules can be abstract or concrete, and contain procedures as well as global variables. Each
module has a module type that can be declared separately. Module types allow for composition:
A module can be parameterized by a module type, and later instantiated with a module having
the correct type. Procedures consist of local variables and a sequence of statements, which
may be procedure calls, variable assignments, random assignments, while loops, or if/else
branches. Statements in a procedure can have side effects by modifying global variables. Within
procedures, members of other abstract and concrete modules can be referenced. Listing 2.1.3
is an example of modules in EasyCrypt: The module Z could be instantiated with either Y1
or Y2. Semantically, the global state of modules are merged into one when they interact with
each other through shared variables or procedure calls. If Z is not instantiated with a defined
module, X would be left abstract. This is useful for adversarial security proofs, where the

4

adversary is left as an abstract module. When used in lemmas, X is universally quantified,
which means that f{) could perform any action, such as modifying Z’s global variable y. An
example of using abstract modules to model adversaries that attempt to distinguish ciphertexts
is given by [10], who model a game between two adversaries as a concrete module representing
the game, parameterized by two abstract modules representing the adversaries.

module Y1 = {
module type X = { var y, z : int
proc £() : unit proc £() : unit = {y <- 0; }
1. proc g : unit = { }
module Z(X : X) = { 1.
var y : int module Y2 = {
proc £ : unit = { X.£0O; } var y : int
}. proc £ : unit = { Y1.£fO; }
}.

Listing 2.1.3 EasyCrypt module system example [19].

2.1.3 Probability distributions

EasyCrypt supports discrete probability distributions as data types to express security assump-
tions and guarantees in lemmas, and to model random oracles that can be queried during
cryptographic games. The user can define distributions on a discrete set using the dist key-
word. Distributions need to be defined by their mass-function. Using the built-in operator mu
and predicates like is_lossless or is_uniform, users can axiomatize the mass-function. For ex-
ample, is_lossless is defined as pred is_lossless ['a] (d : 'a distr) = mu d (fun (x

'a) true) = 1, which says that the sum of probabilities for any element ’a is 1.

Procedures can use random oracles by sampling from a probability distribution using the
<$ operator. Logically, sampling transforms the current distribution of the global memory
according to the sampled distributions’ mass function.

2.2 EasyCrypt Proofs

Lemmas in EasyCrypt are proven by a sequence of tactics. Tactics embody general reasoning
principles and transform the current proof state’s goal into new subgoals that, according to the
tactic, are sufficient for the original goal to hold. Each goal consists of a context that has two
parts: a conclusion that we are trying to prove, and a set of variables and assumptions that we
may assume true to prove the conclusion. To those familiar, goals in EasyCrypt can be read
similarly to a logical rule of inference that we are trying to prove. Because EasyCrypt proofs
are in "tactic-style" [30, p. 259], they are harder to understand and lack structure to human
readers compared to conventional proofs.

2.2.1 Ambient logic

EasyCrypt includes an ambient higher-order logic for proving general mathematical judg-
ments, and does not reason about the results of imperative procedures, which are handled by

5

logics described in sec. 2.2.2. In addition to aforementioned tactics, ambient logic goals can be
automatically discharged by the help of SMT solvers, for which EasyCrypt uses Why3 [37].

Formulas of the ambient logic extend expressions by adding quantifiers, predicates, memo-
ries, and judgments about imperative programs. Formulas are used to state axioms and lemmas,
with axioms assumed to be true, while lemmas need to be proven via tactics. Users have to
ensure axioms are consistent, because otherwise they can allow one to prove false lemmas:
For example the axiom axiom Empty: !(exists (x : t), true) canbe used to prove false,
since all types in EasyCrypt are assumed to be non-empty.

The following is an overview of some ambient logic tactics [19]:

o T => 11...1 (Introduction): Moves assumptions from the goal’s conclusion to the goal’s
assumption. 7 can be another tactic, in which case the introduction pattern ¢; is matched
with subgoal G; after applying .

o 7 : ..., (Generalization): Moves assumptions 7,..77; from the goal’s assumption to
the goal’s conclusion, adding implications or universal quantification, and then run
tactic 7.

+ exists e: Transforms a goal’s conclusion of the form exists (x : 'a), P xintoP
e.

« smt: Tries to solve the goal using SMT solvers.

« apply p (Backwards reasoning): Tries to unify the goal’s conclusion with the conclusion
of p, and replace it with p’s assumptions.

« case ¢ (Case analysis): Perform an excluded-middle case analysis on ¢. If ¢ is not
given, destruct the goal’s conclusion depending on form. For example, inductive data-
types are destructed into their constructors, while a disjunction is destructed into its
subformulas.

« elim /L: Perform induction on inductive datatypes, the integers, or the induction
principle L.

To illustrate, listing 2.2.1 contains an example. Using EasyCrypt’s expression language, we
defined an inductive datatype list and the snoc operation on it, appending an element to
the back. Lemma snoc_len asserts that snoc makes any list one element longer. The blue-
highlighted text has already been processed by EasyCrypt, with the current goal’s context
being displayed to the right. We start the proof by using the elim tactic to perform induction
on |, subsequently moving x0, 1, IH to the context’s assumptions. The remaining conclusion
is proven by applying the induction hypothesis IH and simplifying the goal.

2.2.2 Program logic

Ambient logic formulas can state assertions about imperative procedures in the following
ways [19]:

o Pr[M.p(e;...en) @ $m : ¢] (Probability expression): Represents the probability that
running procedure M.p(e;...e,) with global memory $m results in a global memory
satisfying ¢.

type ('a) list = [| Nil
| Cons of 'a & '"a list].

op snoc ['a] (x: 'a, 1: 'a list) = Current goal
with 1 = Nil => Cons x Nil Type variables: 'a
with 1 = Cons h t
=> Cons h (snoc x t). X: 'a
x0: 'a
lemma snoc_len ['a] 1: '"a list
(x : 'a, 1: 'a list): IH: length (snoc x 1) =1 + length 1
length (snoc x 1) =1 + length 1. |---—------------————
proof. length (snoc x (Cons x0 1))
elim 1 => // x0 1 IH. =1 + length (Cons x0 1)
+ simplify. rewrite IH. simplify.

trivial.
ged.

Listing 2.2.1 Example ambient logic proof of snoc_len.

« hoare[M.p : ¢ ==>] (Hoare logic (HL) judgments): Asserts that running M.p with
precondition ¢ on parameters and the global memory, results in a memory satisfying
the postcondition .

« phoare[M.p : ¢ ==> y] [> | < | =] e (probabilistic Hoare logic (PHL) judgments):
Like a HL judgment, but relating the probability of satisfying the postcondition after
termination to e.

« equiv[M.p ~ N.q : ¢ ==> y] (probabilistic relational Hoare logic (PRHL) judgments):
Relates the probability distributions of M.p’s and N. q’s global memories, after execution,
to each other according to preconditon ¢ and postcondition . Within the judgment, $1
refers to the memory of M. p, and $2 refers to the memory of N. q. The judgment is true iff.
all memory pairs satisfying ¢ are transformed into a pair of distributions on memories
I1,, 114 by running M.p and N.q on them, such that they satisfy 1. The distributions
satisfy ¢ iff. there is a function f dividing the mass y of each m € II,, between the
m € Il such that Vmg € Il .u(mg) = Z{f(mp)|(mg, mp)}. PRHL judgments are
especially relevant when modeling adversarial games.

Some background knowledge in Hoare logic is useful when trying to understand how Easy-
Crypt reasons about imperative programs, for example by reading [33] or [31]. Simplified,
Hoare logic defines Hoare triples: {P}c{Q}, which means that program c, if executed in a state
satisfying P, terminates in a state satisfying Q. What makes Hoare logic usable are proof rules
that follow a programs structure and allow for the composition of proofs and Hoare triples [33].
There are rules for each type of statement encountered in a program, such as assignment, if/else
statements or while loops, plus a sequencing and consequence rule. The sequencing rule states
that a Hoare triple on a sequence of two statements {P}c1; c2{Q} can be proven from {P}c1{R}
and {R}c2{Q} for any Q. The rule of consequence meanwhile asserts that {P}c{Q} can be
proven from {P’}c{Q’} and P = P’ and Q' = Q, informally weakening the precondition and
strengthening the postcondition. A nice feature of Hoare logic is that it is easy to automate rule

7

application, except for while loops: A human has to state correct and sufficient loop invariants
for each while-loop and prove inferences between conditions, and an algorithm can carry out
the rest of a program proof [31][208-212].

EasyCrypt extends standard Hoare Logic by the notion of probability for PHL and PRHL
judgments, which arises because of the sampling (<$) operator in programs. When proving
statements about imperative programs, the goal’s conclusion will be in the form of a HL, PHL,
or PRHL judgment instead of an ambient logic formula. There are a number of specialized
tactics to transform program judgments in the current goal and thus to allow reasoning about
programs, such as:

« proc: replaces a judgment of a concrete procedure with its body.

« wp: reasons about the current program using the weakest precondition [31][205], con-
suming as many statements from the end of a procedure as possible.

« rnd: Consumes a randomly sampled assignment from the end of programs, replacing
the conclusions postcondition with the probabilistic weakest precondition.

« transitivity: Proves a PRHL judgment equiv[M.p ~ N.q : P ==> Q] by the tran-
sitivity of new subgoals equiv[M.p ~ T.r : P ==> R], equiv[T.r ~ N.q: R ==>
Ql.

+ byequiv: Allows to reason about the probability of events based on the equivalence of
procedures, or games. For example, using byequiv (_ : P ==> Q) proves a conclu-
sion Pr[M.p(a) @ &m; : E;] = Pr[N.q(b) @ &m; : E,] with the new subgoals:
equiv[M.p ~ N.q : P ==> QJ, a goal stating that precondition P holds on memories
&m; and &my, and one stating that Q = E;{&m1} < E;{&m2}

[19] contains a more complete list of program- and ambient logic tactics.

Using the program logics, "game-hopping" style security proofs can be constructed: PRHL
judgments can be used to show equivalencies between a cryptographic algorithm and abstract
security assumptions, while bounding probabilities state how likely it is for an attacker to
break security. For instance, [10] prove security of Hashed ElGamal by first relating ciphertext
distinguishability to the "Computational Diffie-Hellman assumption" using PRHL judgments,
and then show that the probability of successfully distinguishing ciphertexts is bounded by
the probability of breaking said assumption. Note that security proofs are not restricted to
such "game-hopping" styles: [16], for instance, prove the zero-knowledge property modeling
a simulator that is able to rewind a malicious verifier.

3 Jasmin

Jasmin [20] is a domain-specific programming language for implementing high-speed, high-
assurance cryptographic software. Jasmin’s toolchain consists of a verified compiler, a safety-
checker, and a security type-checker. Jasmin’s semantics are formalized in Coq [4], and the
compiler is verified to produce assembly that preserves the source code’s behavior and constant-
time properties, although the proof that the compiler preserves timing attack mitigations has
not yet been formalized in Coq [1]. Further, Jasmin programs can be extracted to EasyCrypt,
which allows formal reasoning about the behavior and security properties of Jasmin programs.

Jasmin is designed to bridge the gap between high-level and "assembly-level" cryptographic
development, and to produce programs with the following desired properties: (i) Efficiency,
(ii) Side-channel resistance, and (iii) Functional correctness [4]. Because high-level languages
typically don’t achieve desired performance and can’t guarantee side-channel resistance of the
compiled code, cryptographic schemes are predominantly implemented in direct assembly [32].
Assembly-level code is efficient and can be side-channel resistant, but is unportable, costly
to develop, and difficult to implement correctly. Further, verifying correctness, constant-time
execution, and security properties is not easily applicable to assembly [4].

Jasmin addresses the shortcomings of traditional direct assembly development by mixing
high-level and low-level language concepts, while also providing infrastructure for the formal
verification of programs, whose assumptions carry down to the assembly generated by the
compiler.

3.1 Language

The Jasmin language is a high-level imperative programming language that offers precise
control over the generated assembly code inspired by qhasm [11]. Jasmin programs consist
of high-level abstractions, such as parametric functions, for- and while-loops, implicit stack
layout and numerical data types. Unlike typical high-level languages, Jasmin gives program-
mers the ability to refine statements and operators with exact machine instructions, and to
control the register- and stack allocation of variables and flags. Being able to write code with
similar advantages to direct assembly comes with some complexities: Jasmin programs have
to explicitly handle register allocation and spilling, and all expressions have to be side-effect
free. It is also not possible to reference or de-reference memory, although this stems from
a limitation of the language semantics. All Jasmin code corresponds closely to the assembly
generated from it, which the developers call predictability [4] of the language.

3.1.1 Top-level program

Jasmin programs consist of static parameters, global variables, and functions. Functions may
be declared as fn, inline fn, or export fn. Functions can take an arbitrary number of argu-

9

ments and return multiple results, but arguments cannot be passed on the stack, requiring the
allocation of fresh registers. Exported functions become global symbols in the final assembly
code that can be linked against according to the platform’s calling conventions. Next to global
variables, which must be immutable, Jasmin supports lexically scoped, local variables within
the body of functions. All variables are explicitly associated with a type and storage class. Static
parameters on the other hand do not require a storage class and are available as compile-time
constants. Each function’s body is a sequence of statements and variable declarations, ending
in a return statement.

Top-level program elements can be associated to a namespace. Namespaces offer the ability
to separate components of a Jasmin program or library and a mechanism to reuse code with
different parameters (e.g. listing 4.2.1). All elements in a namespace must be prefixed by the
namespace’s identifier when used outside it. Jasmin offers a simple textual inclusion directive,
similar to C #include macros, which can be combined with a namespace to parameterize and
reuse code.

3.1.2 Types

Jasmin supports the following types:

« u8, ul6, u32, ub4, ... (Numerical types): Only unsigned types are available. Nu-
merical types must explicitly be cast between each other. Signed integer semantics are
implemented as special operators on unsigned numbers.

« bool (Boolean types): Must be the result of an instruction that sets a flag as a side effect
or a compile-time known value.

o u;[N] | i€ {816,32,64,..} (Functional Arrays): Arrays are a sequence of numerical
values. The size of an array must be a static value, such as a static parameter. Jasmin’s
arrays behave as first-class values: when the array is passed as an argument, or assigned
to another array variable, all the contents of the array are "moved" to that new location.
Data is not actually copied in final assembly code because of optimizations, but at the
source-code level values of an array cannot be accessed anymore after assigning it to a
new location. This also requires all functions to return the arrays they modify.

«+ int: Compile-time integer values of arbitrary size.

Functional arrays are atypical for imperative, high-level languages and assembly-level pro-
gramming, but simplify verification of Jasmin programs [1].

3.1.3 Storage classes

Storage classes must be explicitly specified for every variable and function parameter. This
allows the programmer to manually handle register allocation and spilling when fine-tuning
performance, and prevents the compiler from introducing side-channel leakage from implicit
register-allocation or aliasing. Because the code declares which values are kept in machine-
registers, it has to be written with a specific machine’s register set in mind, as too many
register-stored values cause a compilation error due to unallocated variables. The available

10

storage classes are: reg for register-allocated values, stack for stack-allocated values, reg ptr
for register pointers to arrays, stack ptr for array pointers stored on the stack, and inline
for compile-time constants. Note that the reg/stack ptr storage classes are not comparable
to C-style pointers, as they still require to be attached to an array type with statically-known
size.

3.1.4 Expressions

Expressions are used within statements, for example as the condition of a while-loop or the
value of a variable assignment. Expressions are free of side-effects. They encompass: Binary-
and unary operators, such as arithmetic-, logical, and comparison operators; variables; memory
loads and array accesses; function calls; constants, and intrinsic operators. Intrinsic operators
are special in that they can be architecture-dependent, and allow the use of exact assembly
instructions within Jasmin programs. The use of intrinsic operators aims to make Jasmin
a viable alternative to handwritten assembly code. Of course, using architecture-dependent
intrinsics reduces the code’s portability and makes it less maintainable. Operators and intrinsics
are parameterizable by size- and sign-suffixes to specify the exact type of data they operate
on. For example, listing 3.1.1 shows a Jasmin implementation that has been optimized for
performance using machine-specific intrinsics. The reference version on the left operates on
one 16-bit value, using plain binary addition. The optimized version on the right adds 16 values,
each 16-bit, in parallel using the PADD assembly instruction.

With few exceptions, a Jasmin expression gets mapped to a single assembly instruction
by the compiler. This is to achieve predictability and prevent unwanted side channels. For
instance, an addition of two u64 numbers gets mapped to an x86 ADD instruction with 64-bit
register operands. However, if no instruction corresponds to the expression, like when trying
to add three or more register operands, the compilation fails with an error.

3.1.5 Statements

Statements are the only construct that can alter the state of a Jasmin program via assignments
or control flow. Assignments are of the form d; ...d, = e for local variable assignments,
x[e;] = ej for array assignments, and [x + ¢;] = e; for memory assignments. Array and
memory assignments differ in that memory assignments operate on a machine-word sized
address, while array assignments operate on fixed-size functional arrays. There is currently
no way to convert between the two: memory addresses must be supplied to Jasmin programs
from the environment, for example C code. While-, For-, and conditional statements allow the
programmer to alter the control flow of the program. While-loops can only be used on run-time
computable expressions, and for-loops require compile-time values, like inline variables or
parameters, as bounds. Another difference between the two is that for-loops get unrolled by
the compiler, duplicating the body. Conditional if/else statements with compile-time guards are
also unfolded by the compiler, which allows users to approximate a macro system. Semantically,
a memory assignment is the only statement that has an implicit side effect, since arrays are
always passed and returned by-value. Listing 3.1.1 shows how the programmer explicitly
shapes the compiled code when writing Jasmin: On the left, the while-loop gets compiled into
a backwards branch, and the condition into an immediate comparison that operates on a 64-bit
register storing i. The optimized code on the right instead becomes a linear sequence of the

11

loop’s body, with no comparison or branch taking place at run-time, and no register being
allocated to i.

fn add(reg ptr ul6[KYBER_N] rp bp)

-> stack ul6[KYBER_N] { fn add(reg ptr ul6[KYBER_N] rp bp)
reg u64 ij; -> stack ul6[KYBER_N] {
i=20; ... inline int i;
while (i < KYBER_N) { for i = 0 to 16 {
a = rp[(int)i]; a = rp.[u256 32*%i];
b = bp[(int)i]; b = bp.[u256 32%i];
r =a+ b; r = #VPADD_16ul6(a, b);
rp[(int)i] = r; rp.[u256 32*i] = r;
i+=1; }
} return rp;
return rp; }

}

Listing 3.1.1 Reference [17, ref/poly.jinc] and vectorized [17, avx2/poly.jinc] Kyber [14] Jasmin func-
tions.

3.2 EasyCrypt extraction

Jasmin programs can be extracted to EasyCrypt for verification of functional correctness,
constant-time properties, and security guarantees [1]. The overall structure of a Jasmin pro-
gram is naturally translated to EasyCrypt, as EasyCrypt already formalizes imperative mod-
ules, procedures, while-loops, conditional statements, and variables. In addition, Jasmin has an
EasyCrypt library with theories that model the semantics of Jasmin’s operators and memory.
Memory is modeled as a global module variable containing a functional map between addresses
and the bytes stored at them. When a Jasmin procedure contains a memory assignment, it is
represented as updating the map with a new value in EasyCrypt. Because the entire Jasmin
program shares a global memory, but variables in EasyCrypt exist per-module, the extracted
functions are wrapped in a single EasyCrypt module. These extractions can be used to reason
about functional correctness and security by using the same approaches discussed in ch. 2.

For verifying cryptographic constant-time, Jasmin programs extracted to EasyCrypt are
instrumented with leakage traces. The EasyCrypt module representing a Jasmin program also
includes a list of leakages as its own global variable. All branching conditions, accessed array
indices, and accessed memory addresses are explicitly appended to the list of leakages, thus
representing a "trace” throughout the program’s execution. Cryptographic constant time can
then be stated as follows: Given that two executions of an exported Jasmin function agree on
public inputs, their leakage traces after termination are equal. This statement can be proven
using existing EasyCrypt tactics and Hoare logic.

An example EasyCrypt extraction for an arithmetic primitive of CROSS is shown by list-
ing A.3. Listing 3.2.1 is a formal EasyCrypt proof that the execution time of the "shake256"
Jasmin function only depends on public inputs: It expresses a PRHL equivalence between
two executions that start with equal leakages, input lengths, and addresses for the digest and
input arrays, and shows that they must always terminate with the same leakage trace, thus

12

guaranteeing cryptographic constant time, because the secret content of the input array can
differ.

equiv shake_ct :
Export_ct.M.shake256 ~ Export_ct.M.shake256 :
={leakages, len, digest_out, arr} ==> ={leakages}.
proof.
proc; inline *; sim.
ged.

Listing 3.2.1 Cryptographic constant-time proof of the "shake256" Jasmin function.

Existing work has also used Jasmin’s EasyCrypt extraction to prove security guarantees
on top of functional correctness or side-channel resistance. In particular, using PRHL, the
equivalence between Jasmin code and formal EasyCrypt specifications can be proven. This
shows that security guarantees of the specification also apply to the particular implementation
in Jasmin, and its compiler guarantees those properties are maintained by the final assembly
code. [4] uses such an approach to provide a verified implementation of SHA-3 [29].

3.3 Constant-time checker

Jasmin was extended with a security type system and a static analysis tool for checking crypto-
graphic constant-time at a later release [35]. The security type system can also model misspec-
ulation to protect against Spectre-V1. The constant-time checker is an alternative to manually
showing side-channel resistance via Jasmin’s EasyCrypt extraction.

The differences between both methods are shown in table 3.1. Other than being able to
reason about speculation, the main advantage of the static analysis tool is the lower effort
imposed on the user. Variables, parameters, and results can be annotated with a #secret or
#public. The type system ensures that addresses and branches never depend on secret values.
As any static analysis tool, the type-checker has to over-approximate the set of unsafe programs
and may report false-positives. Using EasyCrypt to verify cryptographic constant-time of a
Jasmin program needs more human involvement, but is also more flexible, in the sense that it
is possible for users to state their own theorems and develop proofs that apply even when the
type-checker could not verify the program.

The two approaches also differ when having intended leakage [5, 35]. Intended leakage
occurs, for example, due to secret data-dependence of a hash- or otherwise irreversible function.
These leaks are not security critical, since the leaked values can be considered public. However,
to both the type system and the EasyCrypt leakage trace these values were computed from
secret inputs, and are thus also considered secret. Probabilistic sampling, such as in Kyber or
CROSS, is another form of intended leakage. The type system offers a #declassify annotation
to "turn" secret values public, while EasyCrypt requires axioms and additional proof steps to
deal with intended leakage.

13

Table 3.1 Comparison of Jasmin’s constant-time type-checker and EasyCrypt verification.

Type-checker EasyCrypt verification

Speculative constant-time support ~ Yes No

Probabilistic program method Declassification ~ Manual proof [5]

One-way function method Declassification ~ Axiomatization, manual proof
Flexibility Low High

Usability High Low

3.4 Safety-checker

Lastly, the Jasmin toolchain has a safety-checker using static analysis to verify a Jasmin pro-
gram is memory-safe and terminates. Because Jasmin programs depend on external parameters,
specifically memory pointers, the checker can’t decide a program’s safety based solely on the
source code. Instead, the safety-checker outputs a safety precondition, which is a sufficient
condition on input parameters guaranteeing safety. As with the static constant-time analy-
sis, the safety-checker can output false-positives. Unlike the constant-time type-checker, the
safety checker does not always terminate within a practical time because the analysis is more
complex.

14

4 Implementing CROSS with Jasmin

Before this project, CROSS had a technical specification [9] and a proof-of-concept reference
and optimized C implementation (CROSS-C) [8]. The technical specification details the math-
ematical background of the CROSS signature scheme, explains the parameter choices and
versions, and includes a high-level procedural description of the key-generation, signature-
generation, and signature-validation algorithms. It also explains why, in general, the signature
scheme is constant-time and should not leak secret inputs. The proof-of-concept implementa-
tion is not validated for cryptographic constant-time, and because it is written in C, widely-used
optimizing compilers can introduce additional leakages that are not present at the source-level.
Both the optimized and reference code support all variants of CROSS described in [9], and are
used for benchmarking and generation of Known Answer Tests [28].

To gain experience with the Jasmin toolchain and evaluate it for future use it suffices to focus
efforts on implementing one variant of CROSS. The variant to implement and verify in Jasmin
was chosen according to the following criteria: (i) It should cover all language features and
potential pitfalls of Jasmin, (ii) it should be suitable for constant-time and functional verification,
(iii) it should represent a realistic cryptographic scheme, and (iv) the final implementation can
be compared to a reference via benchmarks. All of CROSS’ variants fulfill criteria (ii) and
(iii), and would only have marginal differences in criteria (i), since the algorithmic changes
between them would not be interesting to implement on-top of what is already present in
the shared procedures. However, it is important to have a complete, functional end-to-end
implementation of CROSS to compare to CROSS-C using benchmarks, so the simpler variants
are favored according to (iv). Based on the criteria, we chose CROSS-R-SDP fast: it requires
less code and a functionally complete implementation is more likely to fit within this project’s
scope. Extending CROSS-R-SDP fast to the other variants is straightforward and amounts
to changing datatypes and sub-functions used in the scheme. As described in ch. 3, Jasmin
supports optimization by replacing expressions with assembly primitives. So that this initial
CROSS-R-SDP port can serve as a reference for later optimizations and equivalence proofs, it
minimizes usage of such primitives.

Sec. 4.1 gives a high-level overview of the separate parts involved in CROSS-Jasmin. Sec. 4.2
explains the design choices on the source-code level in detail and compares the development of
CROSS-Jasmin to what a C programmer might expect. It also explains limitations of the Jasmin
programming language relevant to CROSS, trade-offs made for the Jasmin port, and their
impacts. Sec. 4.3 describes the automated tests and benchmarks for CROSS-Jasmin. Sec. 4.4
details the constant-time verification of CROSS-Jasmin, and sec. 4.5 formal proofs based on
Jasmin’s EasyCrypt extraction. Finally, sec. 4.6 summarizes the main limitations of the Jasmin
toolchain relevant to the project.

15

4.1 Overview

The Jasmin port of CROSS has the following components, whose relationship is shown in
fig. 4.1.1:

4.1.1 Fully functional Jasmin-language implementation of CROSS

The functionality of CROSS-R-SDP fast is implemented in the Jasmin language and compiled
to x86_64 assembly. This implementation serves as the basis of our Jasmin port, can be linked
to other software, be functionally- and constant-time verified using the toolchain, or used as a
reference for performance optimizations. The Jasmin implementation covers all the features of
the CROSS signature scheme to avoid off-loading functionality to a non-verified system, where
high-assurance properties like cryptographic constant-time might be compromised. Just like
the proof-of-concept library, our interface consists of the three procedures KeyGen(), Sign(),
and Verify ().

4.1.2 Jasmin-language implementation of SHA-3

CROSS uses SHAKE [29] for its CSPRNG and as a hash function primitive. The proof-of-concept
implementation can be configured to either use a public-domain, pure C implementation of
SHAKE, or be linked against a system-installed library. This project requires a pure Jasmin
implementation of SHAKE because external libraries can compromise security, and at worst
nullify any assurance gained from using Jasmin. Re-using the predominant Jasmin SHA-3
library [6] could save time, but given that its interface is not easily compatible with CROSS,
and implementing a cryptographic primitive is a realistic use-case of Jasmin that should be
evaluated, we re-implement SHAKE in Jasmin.

4.1.3 C library-wrapper

A minimal C library that links against assembly produced from the Jasmin source code, manages
random seeds, and allocates memory. This wrapper can be distributed for use in other C or
C++ projects. To avoid introducing side-channel leakage, the library-wrapper contains as little
logic as possible, and does not dereference any secret input- or output data.

4.1.4 Test bench and benchmarks

A test bench is implemented in C using the Unity [23] framework and checks correct function-
ality of CROSS-Jasmin with unit-tests and KAT generation. Additional benchmarks allow for
comparing the code size, maximum stack usage, and runtime performance of CROSS-Jasmin
and CROSS-C for a quantitative evaluation.

4.1.5 Constant-time verification

Machine-checked verification of CROSS-Jasmin’s source code assures that the Jasmin compiler
produces side-channel resistant assembly where the execution time does not depend on secret
inputs. Verifying cryptographic constant-time of CROSS-Jasmin is non-trivial using either

16

the EasyCrypt extraction or the constant-time checker, because CROSS performs probabilis-
tic sampling and branches on the hash of secret inputs. After evaluating both approaches,
the constant-time checker was chosen to verify CROSS-Jasmin. Additionally, an example of
verifying cryptographic constant-time based on the EasyCrypt leakage trace is given as a
proof-of-concept for comparison.

4.1.6 EasyCrypt extraction and proofs

Beyond proving side-channel resistance, EasyCrypt enables verifying functional-correctness
and security guarantees of Jasmin code (ch. 2). Some simple correctness properties of the
CROSS port are stated as EasyCyrpt lemmas and proven to outline the process and limitations
in this work, and to enable future work on the topic.

Constant-Time ___Vverifies > Jasmin CROSS generates | CROSS EasyCrypt
Checker Source - Extraction
A
E References
compiles
to EasyCrypt Proofs
Testbench/ Tinks against | | Jasmin CROSS
Benchmarks d Assembly
C Wrapper

Figure 4.1.1 Relation between components of the CROSS signature scheme’s Jasmin implementation.

4.2 Jasmin Program

Writing source code for CROSS-R-SDP fast in Jasmin shows that while sharing a lot of traits
with high-level languages like C, it has notable differences and shortcomings at the language-
level. The ability to define and re-use functions allows for a familiar programming style, which
decomposes programs into libraries and avoid duplication by abstracting shared functionality
as procedures. On the flip side, explicit register allocation, assembly primitives, and manual
variable spilling expose instruction-set details that prevent many desired abstractions and force
all parts of a program to keep the underlying processor in mind.

4.2.1 Cryptographic primitives

CROSS requires SHAKE to implement a cryptographically secure CSPRNG and hash function.
Implementing the Keccak permutation in Jasmin is straightforward, and follows the description
of the official standard [29]. The permutation is implemented as a function in Jasmin, which

17

receives a reg mut ptr u64[25] state, permutes it, and returns the modified array. Since
Jasmin does not spill registers implicitly, a caller of the function has to ensure enough registers
are available for intermediate results. For example, the code currently uses 7 registers for the
permutation function, which leads to a compilation error due to register pressure when called
from a context with a lot of allocated registers.

The Keccak permutation is called by the SHAKE hash function. SHAKE is implemented
as both a non-incremental, and an incremental version used as a CSPRNG. Because Jasmin
programs cannot modify global memory and function calls don’t have side-effects, the incre-
mental hash function has to return the modified state, and the caller has to explicitly pass it
between calls. To implement CROSS’ hash function in Jasmin, the incremental SHAKE imple-
mentation is wrapped with a non-incremental, fixed-length version. Listing 4.2.1 (a) shows
the fixed-length hash function used by CROSS. The aux’ variable holds auxiliary data that
is required for incremental operation, such as the number of absorbed bytes. The state_ptr
is explicitly returned by functions that modify it, due to Jasmin’s functional array semantics
(ch. 3).

Listing 4.2.1 (b) displays another shortcoming compared to CROSS-C: In C, it is possible
to reference data by creating pointers to data objects, like arrays, and dynamically modify
them and the values they reference. The Jasmin language currently has no way to generate
pointers that reference stack data, all memory pointers need to be passed to Jasmin functions
by the external environment. The CROSS signature scheme needs to hash differently sized,
temporary, stack data and generate different length digests. In CROSS-C, there is a single
SHAKE implementation that receives two data pointers with dynamic length parameters, but
due to Jasmin’s limitation, we need to duplicate the function for every fixed input- and digest
lengths used in CROSS. While we do not have to duplicate source code because of Jasmin’s
parameterizable namespaces, the compiler generates duplicate assembly for each namespace,
considerably increasing the binaries’ size.

4.2.2 Arithmetic primitives

Other than the cryptographic primitives described in the previous section, most basic oper-
ations of CROSS are arithmetic, logical primitives. This includes computing matrix-vector
products, subtracting, adding, or multiplying vectors, bit- packing and unpacking vectors, etc.
The reference proof-of-concept implementation maps these operations to C procedures using
simple while-loops. Such procedures translate well to Jasmin functions, with some additional
boilerplate code for handling registers and temporary values. Jasmin gives developers the
ability to implement loops using either backwards-branching while-, or unrolled for-loops,
requiring users to make an explicit choice for each loop, a process that is instead handled
automatically by optimizing C compilers. Almost all while-loops in the proof-of-concept rep-
resentation could be replaced by for-loops that get unrolled, since the iteration count is fixed.
Because loop-unrolling has unclear performance impacts, for example by increasing code size,
increasing the rate of cache misses, or decreasing pipeline hazards, there is no simple answer
on which loop version to use for each iteration in CROSS. For this reference implementation,
loops with high iteration counts (ca. > 100) are implemented with while-loops, and for-loops
are used for small iteration counts.

Passing data efficiently to- and from arithmetic primitives is currently a major challenge
in Jasmin. Vectors and matrices have to be represented as fixed-size functional arrays, which

18

fn shake256_fixed(
reg mut ptr u8[KC_DIGEST_SIZE]
digest_out,
reg ptr u8[KC_INPUT_SIZE] arr)
-> reg mut ptr u8[KC_DIGEST_SIZE] {
() = #spill(digest_out);
stack u6b4[keccak_state_size] state;
stack u64[keccak_aux_size] aux;
reg mut ptr u64[keccak_state_size]
state_ptr;
state_ptr = state;
state_ptr, aux =
init_shake256(state_ptr, aux, arr);
() = #unspill(digest_out);
state_ptr, aux, digest_out =
keccak_inc_squeeze(state_ptr, aux,
digest_out);
return digest_out;

}

namespace Keccak_384 {
param int KC_INPUT_SIZE = 384;
param int KC_DIGEST_SIZE = 48;
require "keccak_fixed.jinc"
}
namespace Keccak_fq_vec_beta {
param int KC_INPUT_SIZE =
HASH_DIGEST_LENGTH;
param int KC_DIGEST_SIZE =
BYTES_BETA_ZQSTAR;
require "keccak_fixed.jinc"

}

Listing 4.2.1 (a) Jasmin source code for the fixed-length CROSS hash function and (b) example names-
paces.

cannot be referenced by pointers. Also, arrays cannot be turned into sub-arrays, or "slices", from
run-time indices. One consequence is, as with the cryptographic primitives, that procedures for
different vector lengths have to be duplicated, even when they perform the same computation.
In addition, data often has to be redundantly copied between arrays: When a loop from the
CROSS specification is implemented as a while-loop in Jasmin, so that it isn’t being unrolled,
the loop index is a run-time value, and thus cannot be used to slice arrays. In that case, the
only option when calling a function that operates on a fixed-length slice, is to copy all contents
of the sub-array into a temporary stack array, and pass it to the function. As an example, the
’Sign’ procedure of CROSS calculates y; < u; + beta[i] - e; [9, Algorithm 2, line 26]. When
using a while-loop in Jasmin, it isn’t possible to address the slices e/, y;, or u;, and pass them
to a vector addition function, without copying the data.

While Jasmin has these shortcomings with data-sharing and code re-use, it handles bit-
manipulation very well. Many arithmetic primitives operate on the bit-level, for example
when packing vectors. Numerical data types are all unsigned integers, and thus naturally
represent bit-vectors. All common logical operators, like bit-shifting, the boolean operators A
V @ -, or rotations are defined as operators by the language. Further, assembly primitives can
be used to specify exact register widths of arguments and results, and to assign flags to reg
bool variables. Arrays can be interpreted as storing any numerical data types, no matter the
declared type of the array, making it straightforward to reinterpret memory.

4.2.3 Algorithms and data-structures

At the conceptual level, CROSS uses more involved algorithms and data structures, which
make use of the described primitives, to implement the signature scheme. These are, for

19

example, the Sign, Verify, and KeyGen procedures themselves, but also some lower-level func-
tions, such as random sampling, seed expansion, or seed-tree generation. What differentiates
these higher-level procedures from cryptographic- or arithmetic primitives is that they are
more algorithmically involved: They may have multiple nested loops with dynamic iteration
counts, may call different functions based on run-time values, and typically operate on more
complicated data-structures, while aforementioned primitives operate on simple, linear byte
sequences. These functions are more difficult to efficiently implement in Jasmin.

One problem that arises when handling data-structures is their representation in the pro-
gramming language: The only aggregate data-type Jasmin supports are arrays of integers.
Structs and multidimensional arrays from CROSS-C have to be flattened to simple byte arrays
in CROSS-Jasmin, complicating code that operates on them. Operations on nested data-types
are also often not possible to map to Jasmin because of the inability to take run-time references
or to address subarrays, described in sec. 4.2.1 and 4.2.2.

Having to explicitly allocate and spill registers complicates writing algorithms that require
many temporary values, indices, or counters. While not limiting a program’s functionality as
much as Jasmin’s missing support for memory references does, manually handling register-
allocation requires more resources to implement, and makes the source code less flexible and
reusable. Functions are not as good of an abstraction in Jasmin, as calling them can result in
register allocation errors if not enough registers are free at the callsite. Since register allocation
is an ISA-dependent process, it exposes details of the underlying machine to developers and
makes source code architecture dependent, even if no primitive assembly instructions are
used. For example, arguments to a function have to be allocated according to the ABI’s calling
convention, which results in a compile-time error if that specific register is required by an
operation in the function’s body. Handling stack- vs. register-storage is further complicated by
the restriction of certain operations to certain storage classes, according to the ISA. If the CPU
only supports register operands to an instruction, then Jasmin programs have to use register-
allocated variables. To illustrate, on x86 the bit-shift instructions requires the second argument
to be in register CL, so the Jasmin program stack u64 x y; x << y cannot be compiled.

4.3 Automated Tests

Writing automated unit- or integration tests for Jasmin code can be done in any language
that links with C object files. For this project, the simple C testing framework Unity [23]
was used. Testing is not only used to ensure correct functionality, it is also necessary for
debugging Jasmin programs during development. Since Jasmin has no option for I/O and the
compiler doesn’t support generation of debugging symbols, users are left with testing input-
output behavior of exported functions. The simplest approach to debugging is to split a faulty
function into smaller, exported units, and to test their outputs separately until the source of
error is found. Interactive debugging of Jasmin code is possible to the degree of single-stepping
through assembly instructions, which may be helpful for simple, short functions.

The test suite for CROSS’ Jasmin implementation is comprised of:

« Unit tests of individual functions: Arithmetic-, and cryptographic primitives are tested
according to known input and results.

20

« Integration tests of the Sign, Verify, and KeyGen functions: The end-to-end behavior
of CROSS is tested according to sample keys, signatures, and messages generated by
the proof-of-concept C implementation.

« Automated Known-Answer-Tests: The test vectors from the known-answer-tests of
CROSS are produced and verified according to the published data.

Because of the strict Jasmin memory model, and the absence of pointers, most sources of
error were due to faulty logic, and not because of unsafe memory accesses. Developing a test
suite for Jasmin programs is vital to find- and resolve programming errors.

4.4 Cryptographic Constant-time Verification

The constant-time verification of CROSS-Jasmin is done using the constant-time checker
(sec. 3.3). A number of functions have also been verified using the EasyCrypt extraction
(sec. 3.2) to compare both approaches.

4.4.1 Verification using EasyCrypt extraction

The initial approach for ensuring constant-time execution of CROSS was to show leakage
resistance via the EasyCrypt extraction. The formalization of cryptographic constant-time in
EasyCrypt was added to Jasmin before the constant-time checker, and most existing guides and
literature refer to it rather than using the security type system. Verifying the absence of leakage
is straightforward for CROSS’ cryptographic- and arithmetic primitives, whose execution path
is completely oblivious to secret inputs. For example, listing 3.2.1 shows the specification
and proof script for proving that the runtime and memory access pattern of CROSS-Jasmin’s
shake256 () primitive only depends on the length of the input and the pointer values of array
arguments.

However, verifying constant-time security using this method is tedious and inflexible once
random sampling and one-way functions are introduced to a program. Jasmin instruments
the EasyCrypt extraction with a global leakage trace that accumulates all branch conditions
and memory addresses. EasyCrypt can use automated tactics to show the leakage trace is
always the same, as was done for shake256, but it can’t reason if a trace is security-critical or
not (sec. 3.3). CROSS performs both branching on hashed secret values and random sampling
from the CSPRNG initialized with a secret seed. Let’s consider the sim tactic to show why the
standard approach of proving PRHL equalities fails: sim works by working backwards from
the PRHL judgment’s postcondition, consuming statements from the program [19]. At each
step it updates the equalities of the postcondition according to the consumed statement until
it reaches the precondition. For example, to show that:
={y} (x <- y) ~ (x <- y) ={x} holds, sim propagates the postcondition through the as-
signment, and leaves the implication ={y} ==> ={y} as the goal. Clearly, in case of random
sampling or when using deterministic hash functions, the leakage trace still depends on the
secret values, although they are not security critical.

To handle these cases in EasyCrypt, the user has to axiomatize security assumptions, for
example that hash function outputs are independent of their input values, or develop a more
complicated formalization of cryptographic constant-time and corresponding proofs. For this

21

project we focus on the former approach, while [5] uses the latter for random sampling. One
instance of random sampling in CROSS is the generation of the private vector 7, which is used
to generate the error vector e. Because 7 is defined over the finite field IF; in CROSS-R-SDP,
some random values from the CSPRNG have to be discarded, and so the runtime depends on
the actual sequence of values generated from the secret seed. However, because the CSPRNG
is non-invertible, leaking the number of discarded values does not compromise the secret, and
the discarded values of 1 are never used during signature generation. Listing A.1 shows the
EasyCrypt specification and proof of the function sampling 1. We add an axiom stating that
SHAKE is equivalent to sampling a completely random value to break the dependence between
hash digest and input. We can then write a more involved proof script with Hoare logic tactics
making use of that fact to show that the function still produces the same leakage trace. Note
that adding axioms can introduce errors and allow users to proof false lemmas. For example,
the axiom of listing A.1 removes the dependence of hash inputs and digests, meaning that 5
could now be considered public if the same formalization is used, even though it is a secret
value of the scheme. To avoid mistakes like this, care needs to be taken when writing axioms
and interpreting logical specifications.

4.4.2 Verification using the constant-time checker

[3] Used Jasmin’s security type system, and constant-time checker for verifying that Kyber [14]
is leakage-free. To deal with probabilistic sampling and cryptographic hash functions, they
use the type system’s declassify mechanism (sec. 3.3). For CROSS, the security type system
makes constant-time verification much simpler and easier to maintain than EasyCrypt proof
scripts. It also requires less computational resources to verify security types than to evaluate a
proof script with EasyCrypt using costly smt tactics. The constant-time checker supports type
inference for all non-annotated variables, which means that only the secret inputs and outputs
of CROSS have to be annotated. The checker ensures that no secret value gets propagated to a
public variable, and that addresses and branch conditions only depend on public variables.

The two exported functions of CROSS-Jasmin that must be annotated with types are Sign
and KeyGen, while the Verify function does not receive any secret data. Listing 4.4.1 shows the
signatures of both functions as present in the source code. Classifying the seed parameter of
the KeyGen procedure ensures no data about the generated secret key can leak, because the key
is generated solely from the seed, and its type ’secret’ gets propagated through the program. In
total, CROSS-Jasmin requires eight declassifications: One in each of the four random sampling
functions, two to declassify the part of the CSPRNG state that tracks the number of absorbed
bytes, one for the digest dp, which is generated from secret values, and one to declassify the
public key generated from the private key. The sample_vec() function of listing 4.4.1 gives
an example of how declassification is used.

One issue arose with the incremental version of SHAKE. The incremental implementation
usually extends the state array of SHAKE by one additional element, counting the number of
absorbed bytes. Conceptually, the state of a hash function should be a secret value, but the
additional counter has to be public, since SHAKE’s execution time depends on it. Jasmin does
not allow for individual cells of arrays to have different security types. To avoid unnecessarily
declassifying the entire state, the additional count is passed explicitly as an auxiliary parameter.
This way the state can be annotated with ’secret’, while the auxiliary parameter can be "public’.

22

export fn cross_sign(... ,
#[secret] reg mut ptr u64[26] platform_seed_, ...,
#[secret] reg ptr u8[KEYPAIR_SEED_LENGTH_BYTES] skey)
-> reg mut ptr u8[SIG_LENGTH], reg mut ptr u64[26]
export fn cross_keygen(
#[secret] reg mut ptr u8[KEYPAIR_SEED_LENGTH_BYTES] sk_,...
#[secret] reg mut ptr u64[26] platform_seed_)
-> ...
fn sample_vec(...) -> ... {

#[declassify] tmp = tmp;

if(tmp < Q) {
placed += 1;
sub_buffer = sub_buffer >> bits_for_q;
bits_in_sub_buf -= bits_for_q;

} else {
sub_buffer = sub_buffer >> 1;
bits_in_sub_buf -= 1;

Listing 4.4.1 CROSS-Jasmin security type annotations and declassification.

Of course, errors are introduced when declassifying data that should not actually be consid-
ered public knowledge. The reason we can declassify these variables in CROSS is because (i)
they are public values of the scheme, generated by cryptographically secure functions from
secret data, or (ii) the randomly sampled values that influence the execution time are discarded.

4.5 Functional Correctness Properties

EasyCrypt’s program logic enables verifying functional correctness of extracted Jasmin code [1].
Functional correctness, in our case, is the property that our program’s functionality fulfills
some specification. Specifications have different levels of detail, for example, specifying that a
function never produces negative values, or specifying that it always produces exactly the same
value as some reference model. Because the verification of complex software is very time-,
and resource-intensive [24, 25], this project limits itself to a few, simple functional correctness
properties. The goal of these is not to increase the assurance of CROSS-Jasmin, but to further
evaluate the Jasmin toolchain.

Functional correctness proofs for Jasmin programs are well-supported because of Jasmin’s
integration with EasyCrypt. Namely, EasyCrypt’s "weakest precondition” tactic, and its integra-
tion with SMT-solvers can automate a lot of otherwise labor-intensive proof steps. Listing A.2
outlines a simple functional correctness proof of a CROSS function used by the Verify proce-
dure, which checks if a vector is in the expected field. The lemma states that if all elements are
in the field (< 7), the function returns 1. Note that most proof steps are dispatched by smt and
wp tactics, limiting the main manual step to providing the loop invariant via while.

23

4.6 Limitations

This section summarizes the main limitations encountered during the development of CROSS-
Jasmin. Table 4.1 references the relevant sections for the limitation and the component of the
Jasmin toolchain it is caused by. Lack of memory references is a language-level limitation of
Jasmin, making it impossible to pass dynamically-sized arrays. The limitation reduces code
reusability and may necessitate redundant copies of data. Lack of nested data types describes
both the inability to user-define nested data types, such as structs, and the lack of multi-
dimensional arrays. Need for manual register- and stack allocation is a trade-off between the
decrease in abstraction, and the ability for programmers to carefully decide in which exact
register class a value will reside throughout an execution. No debugging symbols is related
to the compiler, which currently cannot generate debugging symbols for Jasmin source code.
Together with a lack of printing values from Jasmin, it reduces the debugging methodology
mostly to unit-tests. Few automated performance optimizations results from the deliberate de-
sign choice to have the compiler produce predictable assembly: The final assembly should
perform instructions as a programmer would expect, given the source code. The level of
compile-time optimization is also restricted due to the constant-time guarantees made by Jas-
min. As a consequence, many transformations that an optimizing C compiler would typically
do now have to be explicitly done at the source code level, for example by using vector in-
struction primitives. Finally, No EasyCrypt leakage model for declassification describes that
the leakage trace model used by Jasmin is not easily compatible with programs that need to
declassify values, for example due to probabilistic sampling in CROSS, or the computation of
a public- from a private-key. Instead, users would have to write considerably more involved
proofs and specifications.

Table 4.1 Relevant Jasmin limitations for the implementation of CROSS.

Limitation Component Section
Lack of memory references Jasmin Language 4.2.1,4.2.2
Lack of nested data types Jasmin Language 4.2.3
Need for manual register- and stack allocation Jasmin Language 4.2.3

No debugging symbols Jasmin Compiler 4.3

Few automated performance optimizations Jasmin Compiler 5.1

No EasyCrypt leakage model for declassification = Jasmin Compiler 4.4

24

5 Evaluation

This chapter provides a quantitative and qualitative evaluation of the Jasmin toolchain. Sec. 5.1
analyzes performance metrics of generated code, and sec. 5.2 discusses advantages and disad-
vantages of utilizing Jasmin that were observed during implementation of CROSS, and con-
cludes by describing a number of alternative tools for high-assurance cryptographic software.

5.1 Measurements

Fig. 5.1.1 shows the mean execution time of cryptographic routines of CROSS-C and CROSS-
Jasmin, the bars are annotated with m for execution time t. The reference Jasmin imple-
mentation is slower than the proof-of-concept C implementation by a factor of ca. 5. Due to
the limited number of optimizations the Jasmin compiler can perform, these values are in the
expected range. The maximum stack usage and binary size are compared in fig. 5.1.2. Note
that neither CROSS-C nor CROSS-Jasmin allocates memory dynamically, so their stack usage
is representative of total memory usage at runtime. The memory usage of CROSS-Jasmin is
nearly the same as that of CROSS-C. Meanwhile, the binary sizes differ by a factor of ca. 4,
which is due to the need for code repetition and unrolling in Jasmin explained in sec. 4.6.

5.1.1 Methodology

The variant used for both CROSS-C and CROSS-Jasmin in all measurements is CROSS CAT 3 R-
SDP fast. The evaluation-platform is a Linux machine with a x86_64 processor. The platform’s
configuration is summarized in table 5.1. The speed metrics are given as a statistical mean
to exclude deviation caused by the operating system, such as scheduling decisions. The size
metrics are deterministic for any given arguments to the measured functions and thus don’t
require statistical analysis. The Sign and Verify procedures were invoked with a 32-bytes long
message.

Table 5.1 Evaluation-platform’s configuration.

Component Name Version

CPU AMD Ryzen 9 7950X Zen 4

(ON] Linux 6.12.3

C-Compiler GCC 13.3.0
Jasmin-Compiler jasminc v2024.07.0 (e4640e7)

25

0.68 = Cross-C

KeyGen = Cross-Jasmin

| 32.11

Verify -|

|

Sign |

| 6.17

| 62.14

| 11.58
l | | Lo
10° 10° 10*
ms

Figure 5.1.1 CROSS speed performance measurements of the Proof-of-concept C implementation vs.
the Jasmin implementation.

5.2 Discussion

First, we discuss the benchmarking results from the previous section. Both the proof-of-concept
C implementation, and CROSS-Jasmin follow an "idiomatic" coding style, and do not attempt
to optimize the programs for performance, such as by using vector instructions. We expect the
lower speed of CROSS-Jasmin to be due to limitations imposed on the compiler, which prohibit
multiple kinds of compiler-optimizations, such as dead code elimination. While the Jasmin
compiler has to maintain cryptographic constant-time and use exact registers and memory
operations as defined in the source code, an optimizing C compiler only has to produce the
correct result on procedure exit. Writing optimized Jasmin programs by using, for example,
vector intrinsics, and minimizing memory pressure, would likely close the gap between the
C- and Jasmin-implementation’s performance. [6, p. 1621] demonstrate that their optimized
AVX2 implementation of SHA-3 in Jasmin outperforms OpenSSL’s version. It would be more
difficult to reduce the binary size of CROSS-Jasmin to an amount comparable with CROSS-
C. As detailed in sec. 4.6, the Jasmin language currently has limitations, which require code
duplication for different argument sizes or compile-time parameters. This issue would best be
solved with extensions to the language. Another likely cause of increased code size is that all
for-loops get implicitly unrolled by the compiler. It is possible to replace every for-loop with
a while-loop, although the user has to carefully examine the size- and performance impact
of using branching- vs. unrolled code for each loop. A C compiler instead uses heuristics to
decide on which loops to unroll, and how many times to unroll it. It would also be possible
to extend the Jasmin compiler in the future with similar heuristics. As a first, non-optimized
reference implementation, the Jasmin program’s performance is promising when considering
that it is verifiably cryptographic constant-time.

Second is a discussion of the development of Jasmin-C and accompanying EasyCrypt proofs.
This part emphasizes the major shortcomings of Jasmin compared to a typical C implementation
that could limit future work with the toolchain. Constraining the whole development process

26

00 Cross-C 10 Cross-Jasmin

250 |- -1 80
200 -
-1 60
£ 150
-140
100
-1 20
50 -
0 1 1 D\ﬁ 1 0
Sign Verify KeyGen Binary
(A) (B)

Figure 5.1.2 CROSS size measurements of the Proof-of-concept C implementation vs. the Jasmin
implementation. (A) Stack usage; (B) Flash usage (Text + Data + BSS).

with Jasmin, regardless of the specific project, is that it takes considerably more resources
than typical, high-level languages require. Because a programmer has to explicitly manage
registers, stack slots, spilling, and manually perform optimizations, it is close to an "Assembly-
level" programming model. This feature of the Jasmin language has both the negative effect
of shifting tasks from the compiler to users, which they have to account for, and the positive
effect of giving them a large level of control, which might be necessary to avoid side-channel
leakage. [4] call this aspect predictability, because the programmer can predict what assembly
will be generated from source code. A major issue during the development of CROSS-Jasmin
were missing constructs for memory references from the Jasmin-language, which result in
being unable to reuse functions with different array sizes and impose unnecessary copies of
data onto the program. This proved particularly challenging for implementing arithmetic and
cryptographic primitives for CROSS, which are often reused for multiple in- and output lengths
throughout the program. This limitation is not necessary for cryptographic constant-time and
could be resolved in the future by adding features to the language. Lastly, we want to point
out that Jasmin is not well-documented, and some features are only described in the commit
history, or not described at all. For example, the fact that arrays can be divided, or "sliced" is not
mentioned in the official documentation. Multiple points throughout development required
reading the compiler’s source-code to learn about Jasmin language constructs.

Proving functional correctness or safety properties about Jasmin programs is relatively
simple thanks to the interoperability with EasyCrypt. EasyCrypt has a flexible system for
adding theories and has a set of automated tactics to reason about imperative programs as well
as higher-order logic. Its integration with SMT solvers means that most program proofs can

27

be carried out by providing correct loop invariants, calculating a verification condition, and
dispatching it with automated solvers. The overhead for an experienced user is reasonable,
especially because cryptographic schemes mostly use simple algorithms and data-structures.
Two issues that arose related to verifying the EasyCrypt extraction of CROSS-Jasmin were
(i) that the leakage-model is insufficient for proving random sampling correct, and (ii) that
refactoring Jasmin code requires existing proofs to be adapted, because they are written with
the code’s structure in mind. Luckily, issue (i) could be avoided by using the constant-time
checker instead, while (ii) has to be explicitly accounted for by development practices.

Finally, we want to reference alternative tools to Jasmin for high-assurance cryptographic
implementation. Some authors, such as [7] have proved functional correctness of a scheme
implemented in C and then used a verified compiler, such as CompCert [26], to ensure prop-
erties are maintained by the binary. However, while CompCert produces functionally cor-
rect machine-code, it does not make guarantees about execution-time side-channel leakage.
Vale [13] is a tool for verifying cryptographic code at the assembly-level. Vale is a program-
ming language, similar to Jasmin, which gets compiled into an architecture-specific abstract
syntax tree (AST) in Dafny [22]. Dafny is then used to verify properties about the code,
such as functional-correctness or side-channel resistance, and outputs the final assembly code.
Qhasm [11] is a programming language for cryptographic software that combines the preci-
sion of assembly-level programming with generic, machine-independent operators, such as
addition or bit-shifting. Jasmin is inspired by ghasm, but introduces more high-level language
concepts like loops and functions [4]. Qhasm allows for machine-independent development of
high-speed cryptographic software as opposed to writing direct assembly, but it does not have
a formally verified semantics or a verification toolchain, which makes it unsuitable for high-
assurance, verified programs. Also similar to Jasmin is ct-verif [2], which verifies constant-time
security of code on the LLVM intermediate representation. Because the verification is per-
formed close to final machine-code generation, the authors argue that constant-time security
gets preserved. Unlike in Jasmin, this property could still be violated by compiler optimization
of the verified code.

28

6 Outlook

This work’s contributions, namely a fully functional, cryptographic constant-time, reference
implementation of CROSS in Jasmin and the related evaluation of its toolchain and EasyCrypt
are a foundation for potential future topics. This chapter describes selected future work and
what their main contributions would be.

Extend CROSS-Jasmin to multiple variants

CROSS-Jasmin currently implements CROSS-R-SDP fast. Interesting extensions would be
CROSS-R-SDP(G), which bases its cryptography on slightly different arithmetic for perfor-
mance reasons, and CROSS ’balanced’, which uses different high-level algorithms to achieve
smaller signature sizes [9]. For instance, CROSS-Jasmin currently has a signature size of ca.
43 KB, updating the implementation to add support for R-SDP(G) would decrease the size to ca.
27 KB while maintaining the same security level. The main benefit would be a more efficient,
constant-time CROSS implementation in Jasmin. The algorithmic changes are limited and
mostly reduce to updating the arithmetic primitives. In comparison, adding support for the
’balanced’ variant would decrease signature sizes to ca. 28 KB. CROSS-balanced uses different
data structures and algorithms during operation, and could thus be an interesting new use-case
for Jasmin other than offering a performance improvement.

Optimize CROSS-Jasmin

The current implementation in Jasmin is a reference version, and is written with few opti-
mizations. Jasmin is designed with manual source-code level optimizations in mind, similar to
an assembly-level language. For example, a new version of CROSS could replace arithmetic-
and cryptographic primitives with vectorized version by using direct machine-level intrinsics
(sec. 3.1.4). An orthogonal approach for optimization is to remove redundancies in existing
CROSS-Jasmin code, for example eliminating redundant copies of arrays or using better data
structures for intermediate results. Such work would contribute, again, not only a more effi-
cient, high-assurance implementation of CROSS, but also evaluate Jasmin for high-performance

cryptography.

Further verification of CROSS-Jasmin

EasyCrypt allows to verify both the security and functional correctness of Jasmin programs.
[3], for example, verify security properties of Kyber and show that their Jasmin implementation
is functionally correct with respect to a specification in EasyCrypt, and [6] follow a similar
approach for SHA-3. Similarly, CROSS could be specified as a model in EasyCrypt, proven
secure, and then related to a Jasmin implementation, such that the compiled code is asserted
to implement the abstract model. This would require considerable effort to get accustomed
to verification methods of security protocols and imperative programs, to specify CROSS in

29

EasyCrypt, and to develop all proofs and intermediary steps necessary to complete a proof. The
main contributions would naturally be a much more trustworthy implementation of CROSS,
as well as a formal proof of its security.

Extension of Jasmin

Finally, Jasmin could be extended to address the limitations described in sec. 4.6 by adding
features to the language and writing accompanying proofs for the compiler. Independent of
language features, the Jasmin compiler could be extended with support for new architectures,
such as RISC-V [34]. This work would make Jasmin more practical for future use by making
code easier to write, and have Jasmin produce more efficient assembly. Any work on the Jasmin
compiler or language also necessitates writing new proofs in Coq that formalize the language
semantics and show that the compiler preserves them.

30

List of Figures

4.1.1 CROSS-Jasmin architecture

5.1.1 CROSS-Jasmin vs CROSS-C speed measurements

5.1.2 CROSS-Jasmin vs CROSS-C size measurements

31

List of Tables

3.1 Comparison of Jasmin’s constant-time type-checker and EasyCrypt verification. 14
4.1 Relevant Jasmin limitations for the implementation of CROSS. 24

5.1 Evaluation-platform’s configuration. 25

33

List of Listings

2.1.1
2.1.2
2.13
2.2.1
3.1.1
3.2.1
4.2.1
44.1
Al

A2

A3

Functional EasyCrypt specification 4
EasyCrypttheory 4
EasyCryptmodule system 5
EasyCrypt ambient logicproof 7
Comparison of reference and vectorized Jasmincode 12
EasyCrypt constant-time proof of Jasmin function 13
CROSS-Jasmin cryptographic hash functioncode 19
CROSS-Jasmin security type system, 23
EasyCrypt constant-time proof of probabilistic sampling 1
EasyCrypt functional-correctness proof of CROSS-Jasmin function 2
CROSS-Jasmin EasyCrypt extraction example 3

35

Acronyms

AST abstract syntax tree

CROSS codes and Restricted Objects Signature Scheme

CROSS-C proof-of-concept CROSS implementation in C
CROSS-Jasmin this work’s reference CROSS implementation in Jasmin
CSPRNG cryptographically secure pseudorandom number generator
HL Hoare logic

PHL probabilistic Hoare logic

PRHL probabilistic relational Hoare logic

37

References

(1]

(2]

(31

(4]

(6]

(71

(8]

[10]
[11]
[12]
[13]

(14]

(15]
(16]

(17]

(18]

(19]

(20]

Jose Bacelar Almeida et al. “The Last Mile: High-Assurance and High-Speed Cryptographic Implementa-
tions”. In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE, May 2020.

Jose Bacelar Almeida et al. “Verifying Constant-Time Implementations”. In: 25th USENIX Security Sympo-
sium (USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016.

José Bacelar Almeida et al. “Formally Verifying Kyber: Episode V: Machine-Checked IND-CCA Security
and Correctness of ML-KEM in EasyCrypt”. In: Advances in Cryptology — CRYPTO 2024. Springer Nature
Switzerland, 2024, pp. 384-421.

José Bacelar Almeida et al. “Jasmin: High-Assurance and High-Speed Cryptography”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. CCS *17. ACM, Oct. 2017.

José Bacelar Almeida et al. Leakage-Free Probabilistic Jasmin Programs. Cryptology ePrint Archive, Paper
2023/1514. Version 20231006:122313. Oct. 6, 2023. https://eprint.iacr.org/2023/1514/20231006:122313.

José Bacelar Almeida et al. “Machine-Checked Proofs for Cryptographic Standards: Indifferentiability of
Sponge and Secure High-Assurance Implementations of SHA-3”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’19. ACM, Nov. 2019.

Andrew W. Appel. “Verification of a Cryptographic Primitive: SHA-256”. In: ACM Transactions on Pro-
gramming Languages and Systems 37.2 (Apr. 2015).

Marco Baldi et al. CROSS Implementation. Aug. 13, 2024. https://github.com/CROSS- signature/CROSS-
implementation (visited on 11/25/2024).

Marco Baldi et al. CROSS: Codes and Restricted Objects Signature Scheme. Version 1.2. Feb. 3, 2024. https:
//www.cross-crypto.com/CROSS_Specification_v1.2.pdf (visited on 07/05/2024).

Gilles Barthe et al. “Computer-Aided Security Proofs for the Working Cryptographer”. In: Advances in
Cryptology — CRYPTO 2011. Springer Berlin Heidelberg, 2011, pp. 71-90.

Daniel Bernstein. ghasm. 2005. http://cr.yp.to/ghasm.html (visited on 11/18/2024).
Daniel J. Bernstein and Tanja Lange. “Post-quantum cryptography”. In: Nature 549.7671 (Sept. 2017).

Barry Bond et al. “Vale: Verifying High-Performance Cryptographic Assembly Code”. In: 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, Aug. 2017.

Joppe Bos et al. CRYSTALS — Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive,
Paper 2017/634. Version 20201014:095148. Oct. 14, 2020. https://eprint.iacr.org/2017/634/20201014:095148.

CVC5 Contributors. CVC5. 2024. https://cvc5.github.io/ (visited on 10/09/2024).

Denis Firsov and Dominique Unruh. “Zero-Knowledge in EasyCrypt”. In: 2023 IEEE 36th Computer Security
Foundations Symposium (CSF). Vol. 1. IEEE, July 2023.

Formosa Crypto. Libjade. 2024. https:// github.com/formosa- crypto/libjade / tree / main (visited on
11/19/2024).

Formosa Crypto and EasyCrypt Contributors. EasyCrypt. 2024. https://www.easycrypt.info/ (visited on
10/09/2024).

Formosa Crypto and EasyCrypt Contributors. EasyCrypt Reference Manual. Sept. 27, 2024. https://www.
easycrypt.info/easycrypt-doc/refman.pdf (visited on 10/09/2024).

IMDEA Software Institute et al. Jasmin. 2024. https://github.com/jasmin - lang / jasmin (visited on
11/18/2024).

39

https://eprint.iacr.org/2023/1514/20231006:122313
https://github.com/CROSS-signature/CROSS-implementation
https://github.com/CROSS-signature/CROSS-implementation
https://www.cross-crypto.com/CROSS_Specification_v1.2.pdf
https://www.cross-crypto.com/CROSS_Specification_v1.2.pdf
http://cr.yp.to/qhasm.html
https://eprint.iacr.org/2017/634/20201014:095148
https://cvc5.github.io/
https://github.com/formosa-crypto/libjade/tree/main
https://www.easycrypt.info/
https://www.easycrypt.info/easycrypt-doc/refman.pdf
https://www.easycrypt.info/easycrypt-doc/refman.pdf
https://github.com/jasmin-lang/jasmin

(21]
(22]

(23]

[24]

(25]

(26]

(27]
(28]

(29]

(32]

40

Inria. The Coq Proof Assistant. July 5, 2024. https://coq.inria.fr/ (visited on 07/05/2024).
Leino K. and Rustan M. “Dafny: An Automatic Program Verifier for Functional Correctness”. In: Logic for

Programming, Artificial Intelligence, and Reasoning. Springer Berlin Heidelberg, 2010, pp. 348-370.

Mike Karlesky, Mark VanderVoord, and Greg Williams. Unity. Mar. 10, 2024. https:// github. com/
ThrowTheSwitch/Unity (visited on 11/25/2024).

Gerwin Klein et al. “seL4: formal verification of an OS kernel”. In: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. SOSP09. ACM, Oct. 2009.

Xavier Leroy. “A Formally Verified Compiler Back-end”. In: Journal of Automated Reasoning 43.4 (Nov.
2009).

Xavier Leroy. “Formal certification of a compiler back-end or: programming a compiler with a proof
assistant”. In: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. POPL06. ACM, Jan. 2006.

Microsoft Corporation. Z3 Theorem Prover. 2024. https://github.com/Z3Prover/z3 (visited on 10/09/2024).

National Institute of Standards and Technology. Call for Additional Digital Signature Schemes forthe Post-
Quantum Cryptography Standardization Process. Online. Sept. 6, 2022. https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/call-for-proposals- dig-sig-sept-2022.pdf (visited on 12/31/2024).

National Institute of Standards and Technology. SHA-3 standard: permutation-based hash and extendable-
output functions. 2015.

Tobias Nipkow. “Structured Proofs in Isar/HOL”. In: Types for Proofs and Programs. Springer Berlin Hei-
delberg, 2003, pp. 259-278.

Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL. Springer International Publish-
ing, 2014.

OpenSSL Software Services Inc. and OpenSSL Software Foundation Inc. OpenSSL. 2024. https://github.
com/openssl/openssl/tree/master (visited on 12/16/2024).

Benjamin C. Pierce et al. Programming Language Foundations. Ed. by Benjamin C. Pierce. Vol. 2. Software
Foundations. Electronic textbook, 2024.

RISC-V International. RISC-V. 2024. https://riscv.org/specifications/ratified/ (visited on 12/31/2024).

Basavesh Ammanaghatta Shivakumar et al. “Typing High-Speed Cryptography against Spectre v1”. In:
2023 IEEE Symposium on Security and Privacy (SP). IEEE, May 2023.

Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive,
Paper 2004/332. Version 20060118:151030. Jan. 18, 2006. https://eprint.iacr.org/2004/332/20060118:151030.

Toccata. Why3. 2024. https://www.why3.org/ (visited on 11/01/2024).

Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA Nonces Using the FLUSH+RELOAD Cache
Side-channel Attack. Cryptology ePrint Archive, Paper 2014/140. Version 20140227:013343. Feb. 27, 2014.
https://eprint.iacr.org/2014/140/20140227:013343.

https://coq.inria.fr/
https://github.com/ThrowTheSwitch/Unity
https://github.com/ThrowTheSwitch/Unity
https://github.com/Z3Prover/z3
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://github.com/openssl/openssl/tree/master
https://github.com/openssl/openssl/tree/master
https://riscv.org/specifications/ratified/
https://eprint.iacr.org/2004/332/20060118:151030
https://www.why3.org/
https://eprint.iacr.org/2014/140/20140227:013343

A

op hash_distr: (W8.t Array92.t) distr.
axiom hash_distr_lossless: is_lossless hash_distr.
axiom hash_distr_funiform: is_funiform hash_distr.
module Permutation = {
proc perfect_permutation(
state_ptr: W64.t Array25.t,
aux: W64.t Arrayl.t,
digest_out: W8.t Array92.t) : W8.t Array92.t =

var result: W8.t Array92.t;
result <$ hash_distr;
return result;
}
1.
axiom perfect_permutation:
equiv[Cross_ct.M.keccak_zz_vec__keccak_inc_squeeze
~ Permutation.perfect_permutation :
={leakages} ==> res. 3{1} = res{2} /\ ={leakages}].
equiv zz_vec: Cross_ct.M.zz_vec ~ Cross_ct.M.zz_vec:
={leakages} ==> ={leakages}.
proof.
proc. seq 13 13 : (={aux_1, leakages, bits_for_z, mask}); first last.
+ inline *. sim.
+ call (_: ={leakages} ==> res. 3{1} = res. 3{2} /\ ={leakages}).
+ transitivity Permutation.perfect_permutation
(={leakages} ==> res. 3{1} = res{2} /\ ={leakages})
(={leakages} ==> res{l1} = res. 3{2} /\ ={leakages});
progress; auto.
smt. apply perfect_permutation. symmetry.
conseq (_: ={leakages} ==> res. 3{1} = res{2} /\ ={leakages});
auto. apply perfect_permutation.
+ conseq (_: ={leakages} ==> ={leakages, bits_for_z, mask}) => //.
progress. sim.
ged.

Listing A.1 Cryptographic constant time proof of probabilistic sampling in CROSS.

lemma zz_vec_in_restr_group_1:
hoare[Cross.M.is_zz_vec_in_restr_group :
(Array187.all(fun (v : W8.t) => W8.to_uint(v) < 7)(arg))
==> res = W8.of_int(1)].
proc. wp.
while (W64.zero \ule ctr /\
ok = W8.one /\ ctr \ule (W64.of_int 187) /\
Array187.all(fun (v : W8.t) => v \ult W8.of_int 7)(in_0)).
wp. auto. progress. smt. rewrite Arrayl87.allP in HI.
have excl : in_O{hr}.[to_uint ctr{hr}] \ult (of_int 7)%WS8.
smt. smt. smt. wp. auto. progress. rewrite Arrayl87.allP in H.
rewrite Arrayl87.allP. auto; by smt.
ged.

Listing A.2 Functional-correctness proof of arithmetic primitive in CROSS-Jasmin.

proc is_zz_vec_in_restr_group (in_0:W8.t Arrayl87.t) : W8.t = {
var aux_1: bool;
var aux_0: W8.t;
var aux: W64.t;

var ok:W8.t;
var ctr:We4.t;
var b:bool;
var tmp:W8.t;

leakages <- LeakAddr([]) :: leakages;
aux <- (W64.of_int 0);

ctr <- aux;

leakages <- LeakAddr([]) :: leakages;
aux_0 <- (W8.of_int 1);

ok <- aux_0;

leakages <-

LeakCond((ctr \ult (W64.of_int 187))) :: LeakAddr([]) :: leakages;
while ((ctr \ult (W64.of_int 187))) {

leakages <- LeakAddr([(W64.to_uint ctr)]) :: leakages;

aux_1 <- (in_0.[(W64.to_uint ctr)] \ult (W8.of_int 7));

b <- aux_1;

leakages <- LeakAddr([]) :: leakages;

aux_0 <- SETcc b;

tmp <- aux_0;

leakages <- LeakAddr([]) :: leakages;

aux_0 <- (ok & tmp);

ok <- aux_0;

leakages <- LeakAddr([]) :: leakages;

aux <- (ctr + (W64.of_int 1));

ctr <- aux;

leakages <-

LeakCond((ctr \ult (W64.of_int 187))) :: LeakAddr([]) :: leakages;

}
return (ok);

}

Listing A.3 EasyCrypt extraction with leakage trace of CROSS-Jasmin arithmetic primitive.

	1 Introduction
	1.1 Structure of this Work

	2 EasyCrypt
	2.1 EasyCrypt Specifications
	2.1.1 Expression Language
	2.1.2 Module System
	2.1.3 Probability distributions

	2.2 EasyCrypt Proofs
	2.2.1 Ambient logic
	2.2.2 Program logic

	3 Jasmin
	3.1 Language
	3.1.1 Top-level program
	3.1.2 Types
	3.1.3 Storage classes
	3.1.4 Expressions
	3.1.5 Statements

	3.2 EasyCrypt extraction
	3.3 Constant-time checker
	3.4 Safety-checker

	4 Implementing CROSS with Jasmin
	4.1 Overview
	4.1.1 Fully functional Jasmin-language implementation of CROSS
	4.1.2 Jasmin-language implementation of SHA-3
	4.1.3 C library-wrapper
	4.1.4 Test bench and benchmarks
	4.1.5 Constant-time verification
	4.1.6 EasyCrypt extraction and proofs

	4.2 Jasmin Program
	4.2.1 Cryptographic primitives
	4.2.2 Arithmetic primitives
	4.2.3 Algorithms and data-structures

	4.3 Automated Tests
	4.4 Cryptographic Constant-time Verification
	4.4.1 Verification using EasyCrypt extraction
	4.4.2 Verification using the constant-time checker

	4.5 Functional Correctness Properties
	4.6 Limitations

	5 Evaluation
	5.1 Measurements
	5.1.1 Methodology

	5.2 Discussion

	6 Outlook
	References

